AB Calculus Review Sheet

Legend: A - Precalculus, B - Limits, C - Differential Calculus, D - Applications of Differential Calculus, E - Integral Calculus, F - Applications of Integral Calculus, G - Particle Motion and Rates

When you see the words ...
This is what you think of doing

1 (B)	Show that $f(x)$ is continuous.	
2 (C)	Find the equation of the tangent line to f at $\left(x_{1}, y_{1}\right)$.	
3 (A)	If continuous function $f(x)$ has $f(a)<k$ and $f(b)>k$, explain why there must be a value c such that $a<c<b$ and $f(c)=k$.	
4 (D)	Find points of relative extrema of $f(x)$.	
5 (D)	Find range of $f(x)$ on $[a, b]$ (G)	Given the position function $s(t)$, find the average velocity on $\left[t_{1}, t_{2}\right]$.
7 (E)	Approximate $\int_{a} f(x) d x$ using left Riemann sums with n rectangles.	
8 (D)	Given a graph of $f^{\prime}(x)$, determine intervals where $f(x)$ is increasing/decreasing.	
9 (C)	Given a piecewise function, show it is differentiable at $x=a$ where the function rule splits.	
10	Find critical values of $f(x)$. (D)	
11		
(A)	Find the zeros of $f(x)$.	

Legend: A - Precalculus, B - Limits, C - Differential Calculus, D - Applications of Differential Calculus, E - Integral Calculus, F - Applications of Integral Calculus, G - Particle Motion and Rates

When you see the words ...
This is what you think of doing

12 (B)	Find $\lim _{x \rightarrow a} f(x)$. 13 (C)	Find x-values of horizontal tangents to f.
14 (D)	Show that Rolle's Theorem holds for $f(x)$ on $[a, b]$.	
15 (D)	Find inflection points of $f(x)$.	
16 (F)	Find the area between $f(x)$ and $\mathrm{g}(x)$.	
17 (F)	Given $\frac{d y}{d x}$, draw a slope field.	
18	Given the velocity function $v(t)$, determine the difference of position of a particle on $\left[t_{1}, t_{2}\right]$.	
(G)		

Legend: A - Precalculus, B - Limits, C - Differential Calculus, D - Applications of Differential Calculus, E - Integral Calculus, F - Applications of Integral Calculus, G - Particle Motion and Rates

When you see the words ...
This is what you think of doing

$\begin{aligned} & \hline 25 \\ & (\mathrm{G}) \end{aligned}$	Given the position function $s(t)$, find the instantaneous velocity at $t=k$.	
$\begin{aligned} & \hline 26 \\ & (\mathrm{G}) \end{aligned}$	Given the velocity function $v(t)$ and $s(0)$, find $s(t)$.	
27 (F)	Find the average value of $f(x)$ on $[a, b]$.	
28 (E)	Meaning of $\int_{a}^{x} f(t) d t$.	
29 (E)	Find $\frac{d}{d x} \int_{a}^{x} f(t) d t$	
$\begin{aligned} & 30 \\ & (\mathrm{C}) \end{aligned}$	Find x-values of horizontal tangents to f.	
$\begin{aligned} & 31 \\ & \text { (A) } \end{aligned}$	Find domain of $f(x)$.	
$\begin{aligned} & 32 \\ & (\mathrm{C}) \end{aligned}$	Given a chart of x and $f(x)$ and selected values of x between a and b, approximate $f^{\prime}(c)$ where c is a value between a and b.	
$\begin{aligned} & \hline 33 \\ & (\mathrm{G}) \end{aligned}$	Given the velocity function $v(t)$ and $s(0)$, find the greatest distance of the particle from the starting position on $\left[0, t_{1}\right]$.	
34 (F)	y is increasing proportionally to y.	
35 (E)	Given $\int_{a}^{b} f(x) d x$, find $\int^{b}[f(x)+k] d x$	
$\begin{aligned} & 36 \\ & (\mathrm{C}) \end{aligned}$	Find the equation of the normal line to f at $\left(x_{1}, y_{1}\right)$.	
37 (D)	Show that the Mean Value Theorem holds for $f(x)$ on $[a, b]$.	

Legend: A - Precalculus, B - Limits, C - Differential Calculus, D - Applications of Differential Calculus, E - Integral Calculus, F - Applications of Integral Calculus, G - Particle Motion and Rates

When you see the words ...
This is what you think of doing

$\begin{array}{\|l\|} \hline 38 \\ \text { (D) } \end{array}$	Find range of $f(x)$ on $(-\infty, \infty)$.	
$\begin{array}{\|l\|} \hline 39 \\ (\mathrm{C}) \end{array}$	Find the instantaneous rate of change of f at $x=a$.	
40 (F)	Find the line $x=c$ that divides the area under $f(x)$ on $[a, b]$ into two equal areas.	
41 (E)	Approximate $\int_{a}^{b} f(x) d x$ using trapezoidal summation.	
42 (F)	Solve the differential equation $\frac{d y}{d x}=f(x) g(y)$.	
43 (F)	Given a base bounded by $f(x)$ and $g(x)$ on $[a, b]$ the cross sections of the solid perpendicular to the x-axis are squares. Find the volume.	
44 (E)	Approximate $\int_{a}^{b} f(x) d x$ using midpoint Riemann sums.	
45 (D)	Find the interval(s) where $f(x)$ is increasing/decreasing.	
$\begin{aligned} & \hline 46 \\ & (\mathrm{~B}) \end{aligned}$	Find horizontal asymptotes of $f(x)$.	
47 (C)	The line $y=m x+b$ is tangent to the graph of $f(x)$ at $\left(x_{1}, y_{1}\right)$.	
$\begin{aligned} & 48 \\ & \text { (A) } \end{aligned}$	Find vertical asymptotes of $f(x)$.	
$\begin{aligned} & 49 \\ & (\mathrm{C}) \end{aligned}$	Find x-values of vertical tangents to f.	

Legend: A - Precalculus, B - Limits, C - Differential Calculus, D - Applications of Differential Calculus, E - Integral Calculus, F - Applications of Integral Calculus, G - Particle Motion and Rates

When you see the words ...
This is what you think of doing

50 (E)	Given the value of $F(a)$ where the antiderivative of f is F, find $F(b)$.	
51 (F)	Find the area under the curve $f(x)$ on the interval $[a, b]$.	
52		
(D)	Find the minimum slope of $f(x)$ on $[a, b]$.	
53 (E)	Find $\int_{b}^{a} f(x) d x$ where $a<b$.	
54	Given the position function $s(t)$ of a particle moving along a straight line, find the velocity and acceleration.	
55 (F)	Find the volume when the area between $f(x)$ and $g(x)$ is rotated about the x-axis.	
56	Given the velocity function $v(t)$, determine the distance a particle travels on $\left[t_{1}, t_{2}\right]$.	
57	Given the velocity function $v(t)$, determine if a particle is speeding up or slowing down at $t=k$.	Find intervals where the slope of $f(x)$ is increasing. (Giemann sums with n rectangles.
Approximate $\int_{a} f(x) d x$ using right (G) (G)		

Legend: A - Precalculus, B - Limits, C - Differential Calculus, D - Applications of Differential Calculus, E - Integral Calculus, F - Applications of Integral Calculus, G - Particle Motion and Rates

When you see the words ...
This is what you think of doing

$\begin{array}{\|l\|} \hline 60 \\ (C) \end{array}$	Approximate the value of $f\left(x_{1}+a\right)$ if you know the function goes through point $\left(x_{1}, y_{1}\right)$.	
61 (G)	Calculate $\int_{t_{1}}^{t_{2}}\|v(t)\| d t$ without a calculator.	
62 (G)	Given the velocity function $v(t)$ on $\left[t_{1}, t_{2}\right]$, find the minimum acceleration of a particle.	
63 (D)	Find the absolute maximum or minimum of $f(x)$ on $[a, b]$.	
64 (A)	Show that $f(x)$ is even.	
65 (F)	Find the average rate of change of $F^{\prime}(x)$ on $\left[t_{1}, t_{2}\right]$.	
66 (G)	The meaning of $\int_{a}^{b} R^{\prime}(t) d t$.	
67 (G)	Given the velocity function $v(t)$, find the average velocity on $\left[t_{1}, t_{2}\right]$.	
68 (A)	Find the intersection of $f(x)$ and $g(x)$.	
$\begin{array}{\|l\|} \hline 69 \\ \text { (G) } \end{array}$	The volume of a solid is changing at the rate of ...	
$\begin{array}{\|l\|} \hline 70 \\ \text { (G) } \end{array}$	Given the acceleration function $a(t)$ of a particle at rest and $s(0)$, find $s(t)$.	
71 (E)	Find $\frac{d}{d x} \int_{a}^{g(x)} f(t) d t$.	

Legend: A - Precalculus, B - Limits, C - Differential Calculus, D - Applications of Differential Calculus, E - Integral Calculus, F - Applications of Integral Calculus, G - Particle Motion and Rates

When you see the words ...
This is what you think of doing

72		
(D)	Determine whether the linear approximation for $f\left(x_{1}+a\right)$ over- estimates or under-estimates $f\left(x_{1}+a\right)$.	
73		
(B)	Find $\lim _{x \rightarrow a} f(x)$ where $f(x)$ is a piecewise function.	
73	Find the derivative of the inverse to $f(x)$ at $x=a$.	
74	Given a water tank with g gallons initially, filled at the rate of $F(t)$ gallons/min and emptied at the rate of $E(t)$ gallons/min on $\left[t_{1}, t_{2}\right]$ a) The amount of water in the tank at t $=m$ minutes. b) the rate the water amount is changing at $t=m$ minutes and c) the time t when the water in the tank is at a minimum or maximum.	

AB Calculus Review Sheet Solutions

Legend: A - Precalculus, B - Limits, C - Differential Calculus, D - Applications of Differential Calculus, E - Integral Calculus, F - Applications of Integral Calculus, G - Particle Motion and Rates

When you see the words ...
This is what you think of doing
$\left.\begin{array}{|l|l|l|}\hline 1 \text { (B) } & \begin{array}{l}\text { Show that } f(x) \text { is continuous. } \\ 2 \text { (C) } \\ \text { line to } f \text { at }\left(x_{1}, y_{1}\right) .\end{array} & \begin{array}{l}\text { Show that 1) } \lim _{x \rightarrow a} f(x) \text { exists } \\ \text { 2) } f(a) \text { exists } \\ \text { 3) } \lim _{x \rightarrow a} f(x)=f(a)\end{array} \\ \hline 3 \text { (A) } & \begin{array}{l}\text { If continuous function } f(x) \text { has } \\ f(a)<k \text { and } f(b)>k, \text { explain } \\ \text { why there must be a value } c \text { such } \\ \text { that } a<c<b \text { and } f(c)=k .\end{array} & \begin{array}{l}\text { This is the Intermediate Value Theorem. } \\ y-y_{1}=m\left(x-x_{1}\right)\end{array} \\ \hline 4 \text { (D) } & \begin{array}{l}\text { Find points of relative extrema of } \\ f(x) .\end{array} & \begin{array}{l}\text { Make a sign chart of } f^{\prime}(x) \text {. At } x=c \text { where the derivative } \\ \text { switches from negative to positive, there is a relative } \\ \text { minimum. When the derivative switches from positive to }\end{array} \\ \text { negative, there is a relative maximum. To actually find the } \\ \text { point, evaluate } f(c) . \text { OR if } f^{\prime}(c)=0, \text { then if } f^{\prime \prime}(c)>0, \text { there } \\ \text { is a relative minimum at } x=c . \text { If } f^{\prime \prime}(c)<0, \text { there is a relative } \\ \text { maximum at } x=c .\left(2^{\text {nd }} \text { Derivative test). }\right.\end{array}\right\}$

Legend: A - Precalculus, B - Limits, C - Differential Calculus, D - Applications of Differential Calculus, E - Integral Calculus, F - Applications of Integral Calculus, G - Particle Motion and Rates

When you see the words ...
This is what you think of doing

12 (B)	Find $\lim _{x \rightarrow a} f(x)$.	Step 1: Find $f(a)$. If you get a zero in the denominator, Step 2: Factor numerator and denominator of $f(x)$. Do any cancellations and go back to Step 1. If you still get a zero in the denominator, the answer is either $\infty,-\infty$, or does not exist. Check the signs of $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ for equality.
$\begin{aligned} & \hline 13 \\ & (\mathrm{C}) \\ & \hline \end{aligned}$	Find x-values of horizontal tangents to f.	Write $f^{\prime}(x)$ as a fraction. Set numerator of $f^{\prime}(x)=0$.
14 (D)	Show that Rolle's Theorem holds for $f(x)$ on $[a, b]$.	Show that f is continuous and differentiable on $[a, b]$. If $f(a)=f(b)$, then find some c on $[a, b]$ such that $f^{\prime}(c)=0$.
$\begin{aligned} & \hline 15 \\ & \text { (D) } \end{aligned}$	Find inflection points of $f(x)$.	Find and express $f^{\prime \prime}(x)$ as a fraction. Set both numerator and denominator equal to zero and solve. Make a sign chart of $f^{\prime \prime}(x)$. Inflection points occur when $f^{\prime \prime}(x)$ witches from positive to negative or negative to positive.
16 (F)	Find the area between $f(x)$ and $g(x)$.	Find the intersections, a and b of $f(x)$ and $g(x)$. If $f(x) \geq g(x)$ on $[\mathrm{a}, \mathrm{b}]$, then area $A=\int_{a}^{b}[f(x)-g(x)] d x$.
17 (F)	Given $\frac{d y}{d x}$, draw a slope field.	Use the given points and plug them into $\frac{d y}{d x}$, drawing little lines with the calculated slopes at the point.
$\begin{aligned} & \hline 18 \\ & (\mathrm{G}) \end{aligned}$	Given the velocity function $v(t)$, determine the difference of position of a particle on $\left[t_{1}, t_{2}\right]$.	$\text { Displacement }=\int_{t_{1}}^{t_{2}} v(t) d t$
19 (F)	Find the volume when the area under $f(x)$ is rotated about the x axis on the interval $[a, b]$.	Disks: Radius $=f(x): V=\pi \int_{a}^{b}[f(x)]^{2} d x$
$\begin{array}{\|l\|} \hline 20 \\ (\mathrm{C}) \\ \hline \end{array}$	Find the average rate of change of f on $[a, b]$.	$\text { Find } \frac{f(b)-f(a)}{b-a}$
$\begin{aligned} & \hline 21 \\ & (\mathrm{C}) \\ & \hline \end{aligned}$	Find the derivative of $f(g(x))$.	This is the chain rule. You are finding $f^{\prime}(g(x)) \cdot g^{\prime}(x)$.
$\begin{aligned} & 22 \\ & (\mathrm{C}) \end{aligned}$	Find the derivative of a function using the derivative definition.	Find $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ or $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
$\begin{array}{\|l} \hline 23 \\ \text { (A) } \\ \hline \end{array}$	Show that $f(x)$ is odd.	Show that $f(-x)=-f(x)$. This shows that the graph of f is symmetric to the origin.
24 (B)	Find $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$.	Express $f(x)$ as a fraction. Determine location of the highest power: Denominator: $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow-\infty} f(x)=0$ Both Num and Denom: ratio of the highest power coefficients Numerator: $\lim _{x \rightarrow \infty} f(x)= \pm \infty$ (plug in large number)

Legend: A - Precalculus, B - Limits, C - Differential Calculus, D - Applications of Differential Calculus, E - Integral Calculus, F - Applications of Integral Calculus, G - Particle Motion and Rates

When you see the words ...
This is what you think of doing

$\begin{array}{\|l\|} \hline 25 \\ (\mathrm{G}) \end{array}$	Given the position function $s(t)$, find the instantaneous velocity at $t=k$.	Inst. vel. $=s^{\prime}(k)$.
$\begin{array}{\|l\|} \hline 26 \\ (\mathrm{G}) \\ \hline \end{array}$	Given the velocity function $v(t)$ and $s(0)$, find $s(t)$.	$s(t)=\int v(t) d t+C$. Plug in $s(0)$ to find C.
27 (F)	Find the average value of $f(x)$ on $[a, b]$.	$F_{a v g}=\frac{\int_{a}^{b} f(x) d x}{b-a}$
28 (E)	Meaning of $\int_{a}^{x} f(t) d t$	The accumulation function - accumulated area under function f starting at some constant a and ending at some variable x.
29 (E)	Find $\frac{d}{d x} \int_{a}^{x} f(t) d t$.	$\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$. The 2nd Fundamental Theorem.
$\begin{array}{\|l\|} \hline 30 \\ (\mathrm{C}) \\ \hline \end{array}$	Find x-values of horizontal tangents to f.	Write $f^{\prime}(x)$ as a fraction. Set numerator of $f^{\prime}(x)=0$.
31 (A)	Find domain of $f(x)$.	Assume domain is $(-\infty, \infty)$. Restrict domains: denominators \neq 0 , square roots of only non-negative numbers, logarithm or natural log of only positive numbers.
$\begin{array}{\|l\|} \hline 32 \\ (\mathrm{C}) \\ \hline \end{array}$	Given a chart of x and $f(x)$ and selected values of x between a and b, approximate $f^{\prime}(c)$ where c is a value between a and b.	Straddle c, using a value of $k \geq c$ and a value of $h \leq c . f^{\prime}(c) \approx \frac{f(k)-f(h)}{k-h}$
$\begin{array}{\|l\|} \hline 33 \\ (\mathrm{G}) \end{array}$	Given the velocity function $v(t)$ and $s(0)$, find the greatest distance of the particle from the starting position on $\left[0, t_{1}\right]$.	Generate a sign chart of $v(t)$ to find turning points. $s(t)=\int v(t) d t+C$. Plug in $s(0)$ to find C. Evaluate $s(t)$ at all turning points and find which one gives the maximum distance from $s(0)$.
34 (F)	y is increasing proportionally to y.	$\frac{d y}{d t}=k y$ which translates to $y=C e^{k t}$
35 (E)	Given $\int_{a}^{b} f(x) d x$, find $\int_{a}^{b}[f(x)+k] d x$.	$\int_{a}^{b}[f(x)+k] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} k d x$
$\begin{array}{\|l\|} \hline 36 \\ (\mathrm{C}) \end{array}$	Find the equation of the normal line to f at $\left(x_{1}, y_{1}\right)$.	Find slope $m \perp=\frac{-1}{f^{\prime}\left(x_{i}\right)}$. Then use point slope equation: $y-y_{1}=m\left(x-x_{1}\right)$
37 (D)	Show that the Mean Value Theorem holds for $f(x)$ on $[a, b]$.	Show that f is continuous and differentiable on $[a, b]$. If $f(a)=f(b)$, then find some c on $[a, b]$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

Legend: A - Precalculus, B - Limits, C - Differential Calculus, D - Applications of Differential Calculus, E - Integral Calculus, F - Applications of Integral Calculus, G - Particle Motion and Rates

When you see the words ...
This is what you think of doing

$\begin{aligned} & \hline 38 \\ & \text { (D) } \end{aligned}$	Find range of $f(x)$ on $(-\infty, \infty)$.	Use relative extrema techniques to find relative max/mins. Evaluate f at these values. Then examine $f(a)$ and $f(b)$. Then examine $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$.
$\begin{aligned} & \hline 39 \\ & (\mathrm{C}) \\ & \hline \end{aligned}$	Find the instantaneous rate of change of f at $x=a$.	Find $f^{\prime}(a)$
40 (F)	Find the line $x=c$ that divides the area under $f(x)$ on $[a, b]$ into two equal areas.	$\int_{a}^{c} f(x) d x=\int_{c}^{b} f(x) d x \text { or } \int_{a}^{b} f(x) d x=2 \int_{a}^{c} f(x) d x$
41 (E)	Approximate $\int_{a}^{b} f(x) d x$ using trapezoidal summation.	$A=\left(\frac{b-a}{2 n}\right)\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]$ This formula only works when the base of each trapezoid is the same. If not, calculate the areas of individual trapezoids.
42 (F)	Solve the differential equation $\frac{d y}{d x}=f(x) g(y)$.	Separate the variables: x on one side, y on the other with the $d x$ and $d y$ in the numerators. Then integrate both sides, remembering the $+C$, usually on the x-side.
43 (F)	Given a base bounded by $f(x)$ and $g(x)$ on $[a, b]$ the cross sections of the solid perpendicular to the x-axis are squares. Find the volume.	$\begin{aligned} & \text { Base }=f(x)-g(x) . \text { Area }=\text { base }^{2}=[f(x)-g(x)]^{2} \\ & \text { Volume }=\int_{a}^{b}[f(x)-g(x)]^{2} d x \end{aligned}$
44 (E)	Approximate $\int_{a}^{b} f(x) d x$ using midpoint Riemann sums.	Typically done with a table of points. Be sure to use only values that are given. If you are given 7 points, you can only calculate 3 midpoint rectangles.
$\begin{aligned} & \hline 45 \\ & \text { (D) } \end{aligned}$	Find the interval(s) where $f(x)$ is increasing/decreasing.	Find critical values of $f^{\prime}(x)$. Make a sign chart to find sign of $f^{\prime}(x)$ in the intervals bounded by critical values. Positive means increasing, negative means decreasing.
46 (B)	Find horizontal asymptotes of $f(x)$.	$\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$
47 (C)	The line $y=m x+b$ is tangent to the graph of $f(x)$ at $\left(x_{1}, y_{1}\right)$.	Two relationships are true: 1) The function f and the line share the same slope at x_{1} : $m=f^{\prime}\left(x_{1}\right)$ 2) The function f and the line share the same y-value at x_{1}.
$\begin{aligned} & \hline 48 \\ & \text { (A) } \end{aligned}$	Find vertical asymptotes of $f(x)$.	Express $f(x)$ as a fraction, express numerator and denominator in factored form, and do any cancellations. Set denominator equal to 0 .
$\begin{aligned} & 49 \\ & (\mathrm{C}) \end{aligned}$	Find x-values of vertical tangents to f.	Write $f^{\prime}(x)$ as a fraction. Set denominator of $f^{\prime}(x)=0$.

Legend: A - Precalculus, B - Limits, C - Differential Calculus, D - Applications of Differential Calculus, E - Integral Calculus, F - Applications of Integral Calculus, G - Particle Motion and Rates

When you see the words ...
This is what you think of doing

50 (E)	Given the value of $F(a)$ where the antiderivative of f is F, find $F(b)$.	Use the fact that $\int_{a}^{b} f(x) d x=F(b)-F(a)$ so $F(b)=F(a)+\int_{a}^{b} f(x) d x$. Use the calculator to find the definite integral.
51 (F)	Find the area under the curve $f(x)$ on the interval $[a, b]$.	$\int_{a}^{b} f(x) d x$
$\begin{aligned} & \hline 52 \\ & \text { (D) } \end{aligned}$	Find the minimum slope of $f(x)$ on $[a, b]$.	Find the derivative of $f^{\prime}(x)$ which is $f^{\prime \prime}(x)$. Find critical values of $f^{\prime \prime}(x)$ and make a sign chart of $f^{\prime \prime}(x)$. Values of x where $f^{\prime \prime}(x)$ switches from negative to positive are potential locations for the minimum slope. Evaluate $f^{\prime}(x)$ at those values and also $f^{\prime}(a)$ and $f^{\prime}(b)$ and choose the least of these values.
53 (E)	Find $\int_{b}^{a} f(x) d x$ where $a<b$	$\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$
$\begin{array}{\|l\|} \hline 54 \\ (\mathrm{G}) \end{array}$	Given the position function $s(t)$ of a particle moving along a straight line, find the velocity and acceleration.	$v(t)=s^{\prime}(t) \quad a(t)=v^{\prime}(t)=s^{\prime \prime}(t)$
55 (F)	Find the volume when the area between $f(x)$ and $g(x)$ is rotated about the x-axis.	Washers: Outside radius $=f(x)$. Inside radius $=g(x)$. Establish the interval where $f(x) \geq g(x)$ and the values of a and b, where $f(x)=g(x) . V=\pi \int^{b}\left([f(x)]^{2}-[g(x)]^{2}\right) d x$
$\begin{array}{\|l\|} \hline 56 \\ (\mathrm{G}) \end{array}$	Given the velocity function $v(t)$, determine the distance a particle travels on $\left[t_{1}, t_{2}\right]$.	$\text { Distance }=\int_{t_{1}}^{t_{2}}\|v(t)\| d t$
$\begin{aligned} & \hline 57 \\ & (\mathrm{G}) \end{aligned}$	Given the velocity function $v(t)$, determine if a particle is speeding up or slowing down at $t=k$.	Find $v(k)$ and $a(k)$. If both have the same sign, the particle is speeding up. If they have different signs, the particle is slowing down.
$\begin{aligned} & \hline 58 \\ & \text { (D) } \end{aligned}$	Find intervals where the slope of $f(x)$ is increasing.	Find the derivative of $f^{\prime}(x)$ which is $f^{\prime \prime}(x)$. Find critical values of $f^{\prime \prime}(x)$ and make a sign chart of $f^{\prime \prime}(x)$ looking for positive intervals.
59 (E)	Approximate $\int_{a}^{b} f(x) d x$ using right Riemann sums with n rectangles.	$A=\left(\frac{b-a}{n}\right)\left[f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+\ldots+f\left(x_{n}\right)\right]$

Legend: A - Precalculus, B - Limits, C - Differential Calculus, D - Applications of Differential Calculus, E - Integral Calculus, F - Applications of Integral Calculus, G - Particle Motion and Rates

When you see the words ...
This is what you think of doing

$\begin{aligned} & 60 \\ & (\mathrm{C}) \end{aligned}$	Approximate the value of $f\left(x_{1}+a\right)$ if you know the function goes through point $\left(x_{1}, y_{1}\right)$.	Find slope $m=f^{\prime}\left(x_{i}\right)$. Then use point slope equation: $y-y_{1}=m\left(x-x_{1}\right)$. Evaluate this line for y at $x=x_{1}+a$. Note: The closer a is to 0 , the better the approximation will be. Also note that using concavity, it can be determine if this value is an over or under-approximation for $f\left(x_{1}+a\right)$.
61 (G)	Calculate $\int_{t_{1}}^{t_{2}}\|v(t)\| d t$ without a calculator.	Set $v(t)=0$ and make a sign charge of $v(t)=0$ on $\left[t_{1}, t_{2}\right]$. On intervals $[a, b]$ where $v(t)>0, \int_{a}^{b}\|v(t)\| d t=\int_{a}^{b} v(t) d t$ On intervals $[a, b]$ where $v(t)<0, \int_{a}^{b}\|v(t)\| d t=\int_{b}^{a} v(t) d t$
$\begin{aligned} & \hline 62 \\ & (\mathrm{G}) \end{aligned}$	Given the velocity function $v(t)$ on [t_{1}, t_{2}], find the minimum acceleration of a particle.	Find $a(t)$ and set $a^{\prime}(t)=0$. Set up a sign chart and find critical values. Evaluate the acceleration at critical values and also t_{1} and t_{2} to find the minimum.
$\begin{aligned} & \hline 63 \\ & \text { (D) } \end{aligned}$	Find the absolute maximum or minimum of $f(x)$ on $[a, b]$.	Use relative extrema techniques to find relative max/mins. Evaluate f at these values. Then examine $f(a)$ and $f(b)$. The largest of these is the absolute maximum and the smallest of these is the absolute minimum.
64 (A)	Show that $f(x)$ is even.	Show that $f(-x)=f(x)$. This shows that the graph of f is symmetric to the y-axis.
65 (F)	Find the average rate of change of $F^{\prime}(x)$ on $\left[t_{1}, t_{2}\right]$.	$\frac{\frac{d}{d t} \int_{t_{1}}^{t_{2}} F^{\prime}(x) d x}{t_{2}-t_{1}}=\frac{F^{\prime}\left(t_{2}\right)-F^{\prime}\left(t_{1}\right)}{t_{2}-t_{1}}$
$\begin{aligned} & \hline 66 \\ & (\mathrm{G}) \end{aligned}$	The meaning of $\int_{a}^{b} R^{\prime}(t) d t$.	This gives the accumulated change of $R(t)$ on $[a, b]$. $\int_{a}^{b} R^{\prime}(t) d t=R(b)-R(a)$ or $R(b)=R(a)+\int_{a}^{b} R^{\prime}(t) d t$
67 (G)	Given the velocity function $v(t)$, find the average velocity on $\left[t_{1}, t_{2}\right]$.	$\text { Avg. vel. }=\frac{\int_{t_{1}}^{t_{2}} v(t) d t}{t_{2}-t_{1}}$
$\begin{aligned} & \hline 68 \\ & \text { (A) } \end{aligned}$	Find the intersection of $f(x)$ and $g(x)$.	Set the two functions equal to each other. Find intersection on calculator.
$\begin{aligned} & 69 \\ & \text { (G) } \\ & \hline \end{aligned}$	The volume of a solid is changing at the rate of ...	$\frac{d V}{d t}=\ldots$
$\begin{aligned} & \hline 70 \\ & \text { (G) } \end{aligned}$	Given the acceleration function $a(t)$ of a particle at rest and $s(0)$, find $s(t)$.	$\begin{aligned} & v(t)=\int a(t) d t+C_{1} . \text { Plug in } v(0)=0 \text { to find } C_{1} . \\ & s(t)=\int v(t) d t+C_{2} . \text { Plug in } s(0) \text { to find } C_{2} . \end{aligned}$
71 (E)	Find $\frac{d}{d x} \int_{a}^{g(x)} f(t) d t$	$\frac{d}{d x} \int_{a}^{g(x)} f(t) d t=f(g(x)) \cdot g^{\prime}(x)$. The 2nd Fundamental Theorem.

Legend: A - Precalculus, B - Limits, C - Differential Calculus, D - Applications of Differential Calculus, E - Integral Calculus, F - Applications of Integral Calculus, G - Particle Motion and Rates

When you see the words ...
This is what you think of doing

72 (D)	Determine whether the linear approximation for $f\left(x_{1}+a\right)$ overestimates or under-estimates $f\left(x_{1}+a\right)$.	Find slope $m=f^{\prime}\left(x_{i}\right)$. Then use point slope equation: $y-y_{1}=m\left(x-x_{1}\right)$. Evaluate this line for y at $x=x_{1}+a$. If $f^{\prime \prime}\left(x_{1}\right)>0, f$ is concave up at x_{1} and the linear approximation is an underestimation for $f\left(x_{1}+a\right) . f^{\prime \prime}\left(x_{1}\right)<0$, f is concave down at x_{1} and the linear approximation is an overestimation for $f\left(x_{1}+a\right)$.
$\begin{array}{\|l\|} \hline 73 \\ \text { (B) } \end{array}$	Find $\lim _{x \rightarrow a} f(x)$ where $f(x)$ is a piecewise function.	Determine if $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)$ by plugging in a to $f(x), x<a$ and $f(x), x>a$ for equality. If they are not equal, the limit doesn't exist.
$\begin{array}{\|l\|} \hline 73 \\ \text { (C) } \end{array}$	Find the derivative of the inverse to $f(x)$ at $x=a$.	Follow this procedure: 1) Interchange x and y in $f(x)$. 2) Plug the x-value into this equation and solve for y (you may need a calculator to solve graphically) 3) Using the equation in 1) find $\frac{d y}{d x}$ implicitly. 4) Plug the y-value you found in 2) to $\frac{d y}{d x}$
$\begin{array}{\|l\|} \hline 74 \\ (\mathrm{G}) \end{array}$	Given a water tank with g gallons initially, filled at the rate of $F(t)$ gallons/min and emptied at the rate of $E(t)$ gallons $/$ min on $\left[t_{1}, t_{2}\right]$ a) The amount of water in the tank at t $=m$ minutes. b) the rate the water amount is changing at $t=m$ minutes and c) the time t when the water in the tank is at a minimum or maximum.	a) $g+\int_{0}^{m}[F(t)-E(t)] d t$ b) $\frac{d}{d t} \int_{0}^{m}[F(t)-E(t)] d t=F(m)-E(m)$ c) set $F(m)-E(m)=0$, solve for m, and evaluate $g+\int_{0}^{m}[F(t)-E(t)] d t$ at values of m and also the endpoints.

