Unit 2 Polynomials

Introduction to Polynomials; Polynomial Graphs and Key Features

	All Polynomials must have whole numbers as exponents!!
Polynomial Vocabulary Review	Example: $9x^{-1} + 12x^{\frac{1}{2}}$ is NOT a polynomial.

• Expression:

Equation:

- Terms:
 - o Monomial, Binomial, Trinomial, Polynomial
- Degree:
 - o Constant, Linear, Quadratic, Cubic, Quartic

Example 1: Fill in the table below.

POLYNOMIAL	NUMBER OF TERMS	CLASSIFICATION BY TERMS	DEGREE	CLASSFICATION BY DEGREE	SKETCH THE GRAPH
f(x) = 5					
g(x) = 4x - 3					
$p(x) = -2x^5$					
$w(x) = x^4 - 4x + 2$					
$y = -4x^2 + x + 9$	11-31				
$h(x) = 4x^3 + x^2 - 9x + 2$					

You try!	Write the following polynomial in standard form and classify by degree and number of terms.
	$P(x) = 3x^3 - 32x^2 + 48x + x^3$

Deg	ree:	Name Using De	gree:	Na	me Using Num	nber of Terms:	
Sometimes, t	he polyno	omial is in factore	ed form a	and looks like	this:		
			<i>y</i> =	$x^2(-2x+12$	(x - 3)		
Degree:	Name U	sing Degree:		_Name Using	g Number of Te	erms:	

Investigating End Behavior for Polynomial Functions

HTANK W

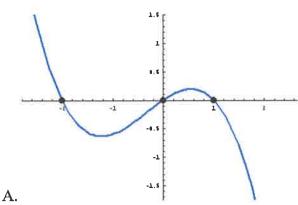
Graph each function on your calculator. Use your graph to fill in the chart.

Graph	Is the degree even or odd?	Is the leading coefficient positive or negative?	Does the graph rise or fall on the left?	Does the graph rise or fall on the right?
1. y = x2				
2. y = x4				
3. $y = -x^2$				
4. $y = -x^4$				
5. $y = x^3$				
6. y = x ⁵				
7. $y = -x^3$				
8. $y = -x^8$				

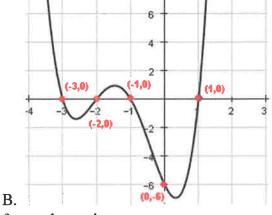
	End Behavio	or of a Polyn	omial Function	
Leading coe	fficient is Pos	itive	Leading coeffic	cient is Negative
	Left	Right	Left	Right
Degree is odd				
Degree is even				

You Tryll

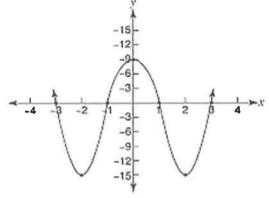
2. $y = -2x^4 + 7x^2 - 6$ 3. $y = -3x^3 + x^2 + 10x - 5$			700 Hry!!	
2. $y = -2x^4 + 7x^2 - 6$ 3. $y = -3x^3 + x^2 + 10x - 5$	Equation	Degree	Leading coefficient	End Behavior
2. $y=-2x^4+7x^2-6$ 3. $y=-3x^3+x^2+10x-5$ 4. $y=8x^4+11x^3+5x^2$	1. $y = x^3 - 3x^2 - 3x + 9$			
	2. $y = -2x^4 + 7x^2 - 6$			
4. $y = 8x^4 + 11x^3 + 5x^2$	3. $y = -3x^3 + x^2 + 10x - 5$			
	4. $y = 8x^4 + 11x^3 + 5x^2$			¥ 5
5. $y = -2x^4 - 5$	5. $y = -2x^4 - 5$			
				*

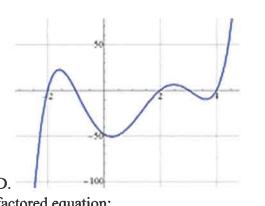

END BEHAVIOR ---- HAND BEHAVIOR

Degree	Leading Coefficient	Left-hand Behavior (× → -∞)	Right-hand Behavior (×→∞)	Picture
Even	Positive	y → ∞	y →œ	•
Even	Negative	y → -cm	y → -œ	ولي
Odd	Positive	$y \rightarrow -\infty$	y → ∞	4 () 3 () 3 () 3 ()
Odd	Negative	y →∞	y → -m	٠


The number "k" is said to be a zero of a polynomial if f(k) = 0.

- "k" is often referred to as the root or solution
- If "k" is a real number, then f(k) = 0 means that the graph crosses the x-axis at that value. "k" can also be referred to as an x-intercept


Check out the graphs below and identify any values that represent a zero/solution/root.


factored equation:

factored equation:

C. factored equation:

factored equation:

Multiplicity

Multiplicity

What is multiplicity?

A multiplicity that is an ODD number will result in the graph ______ or ____ the x axis.

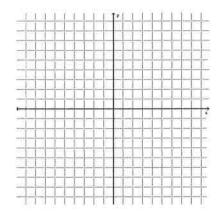
A multiplicity that is EVEN will result in the graph ______ the x axis.

Example 1. Consider f(x) = x(x+3)(x-2)

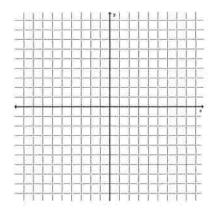
Example 2 f(x) = -x(x+3)(x-2)

Example 3 $f(x) = x(x+3)^2(x-2)$

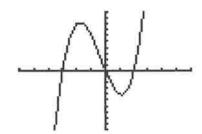
*Example 4: In each of the following factored polynomials, what is the multiplicity of each zero?

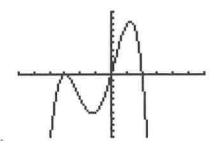

a)
$$y = (x-1)^2(x+2)^3(x-3)$$
 b) $y = -x(x-4)(x+5)^2$ c) $y = -(x-4)^2(x+6)$

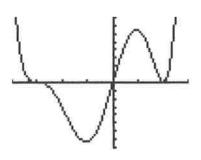
c)
$$y = -(x-4)^2(x+6)^2$$


a)
$$y = (x-1)^2(x+2)^3(x-3)$$

b y =
$$-x(x-4)(x+5)^2$$


b y =
$$-x(x-4)(x+5)^2$$
 c) $y = -(x-4)^2(x+6)$





Use the graphs below to write polynomials that would fit the graphs, based on their zeros, end behavior, and multiplicity.

Solve Polynomial Equations

Review Polynomial Factoring Techniques

Factor out the GCF

$$15x^4 - 20x^3 + 35x^2 = \underline{\hspace{1cm}}$$

Quadratic Trinomials

$$x^2 - 5x - 24 =$$

$$6x^2 + 11x - 10 = \underline{\hspace{1cm}}$$

Perfect Square Trinomials

$$x^2 + 10x + 25$$

$$x^2 - 10x + 25 =$$

Difference of Squares

$$4x^2 - 25y^2 =$$

Factor by Grouping

$$x^3 + 2x^2 - 3x - 6 =$$

Sum or Difference of Squares

$$x^3 + 8 =$$

$$125y^3 - 64 =$$

Solve to find all real and imaginary solutions.

Ex. 1 $2x^3 - 5x^2 = 3x$	Ex 2	$3x^4 + 12x^2 = 6x^3$	

$Ex. 3 x^4 - 4 = 0$	$Ex. 4 x^4 - 3x^2 = 4$
Ex. 5 $x^3 + 2x^2 + 5x + 10 = 0$	Ex. 6 $3x^4 + 10x^2 - 8 = 0$
Ex. $7 x^3 - 64 = 0$	Ex. 8 $8x^3 - 1 = 0$

Dividing Polynomials, f(x) = g(x) as a Solution

a) Using monomials

1.
$$\frac{(3a^2b+6a^3b^2+18ab)}{3ab}$$

2.
$$\frac{12x^2y+3x}{3x}$$

b) Long Division- Just like 4th grade!!!

1.
$$x+3\sqrt{x^2-5x-24}$$

- 1. Ask yourself "what times the first term on the outside will give you the first term on the inside." Write this on top.
- 2. MULTIPLY this term by each term of the divisor.
- 3. Subtract this from the dividend. "Draw the line and change the sign
- 4. Repeat

PUT PLACEHOLDERS IF YOUR POLYNOMIAL SKIPS A TERM

$$2. \frac{9b^2 + 9b - 10}{3b - 2}$$

$$3. \frac{p^3-6}{p-1}$$

4.
$$\frac{t^3-6t^2+1}{t+2}$$

5.
$$(x^4 + 3x^3 + 5x^2 + 12x + 4) \div (x^2 + 3x + 1)$$

c) Synthetic Division (divisor MUST have leading coefficient of 1)

- 1. Coefficients in descending order
- 2. Write the ROOT from the given factor in the box (get it by setting the group = 0)
- 3. Bring down the first coefficient
- 4. Multiply, add, multiply, add...until finished
- 5. Write the answer, starting the polynomial as ONE degree lower than original

Placeholders are needed here as well

.
$$(2x^3 - 7x^2 - 8x + 16) \div (x - 4)$$

2.
$$(3x^3 - x^2 + 2x - 4) \div (x - 3)$$

$$(z^4-20)\div(z+2)$$

4.
$$(2x^4 + 6x^3 + 5x - 6)(x + 2)$$

$$(x^3 - x^2 + 2x - 7) \div (x - 1)$$

The Factor Theorem, Remainder Theorem and Solutions of Two **Polynomials**

The Factor Theorem: The expression _____ is a factor of a polynomial if and only if the value _____ is a zero of the related polynomial function.

The Remainder Theorem: If you divide a polynomial by x - a, the remainder will be ...

Example 1: Given that $P(x) = x^5 - 2x^3 - x^2 + 2$, use the Remainder Theorem to find if x - 3is a factor of P(x).

You try! Find the remainder if $P(x) = x^5 - 3x^4 - 28x^3 + 5x + 20$ is divided by x - 4.

Example 2: Is (x + 2) a factor of $x^3 + 2x^2 - x - 2$?

You try! Is x - 3 a factor of $x^3 + 4x^2 + x - 6$? Is x + 2 a factor of the same poly?

Rational Zeros Theorem: How to find all zeros of a polynomial.

For a polynomial $P(x) = ax^3 + bx^2 + cx + d$, the potential zeros exist at where p will be the Type equation here. factors of the constant term and q will be the factors of the leading coefficient.

Example 4: List the possible rational zeros of the function using the rational root theorem. A. $f(x) = x^3 + 2x^2 - 11x + 12$

B.
$$f(x) = 4x^4 - x^3 - 3x^2 + 9x - 10$$

Example 5: Find all real zeros of $f(x) = x^3 - 8x^2 + 11x + 20$

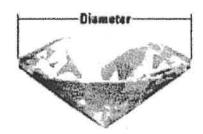
Example 6: Find all real zeros of the following:

A.
$$f(x) = x^3 - 4x^2 - 15x + 18$$

B.
$$f(x) = x^3 - 8x^2 + 5x + 14$$

You can also use the calculator!

Example 7: Graph the polynomial $x^4 - x^3 - 10x^2 - 8x$ to find a root. Then, divide to find all other factors.


Apply it! The polynomial $x^3 + 7x^2 - 38x - 240$ expresses the volume, in cubic inches, of a shadow box. What are the dimensions of the box? The length is greater than the height.

Polynomial Equations and Models

DIAMONDS The weight of an ideal round-cut diamond can be modeled by

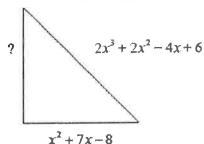
$$w = 0.0071d^3 - 0.090d^2 + 0.48d$$

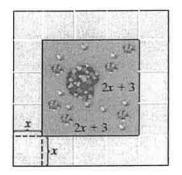
where w is the diamond's weight (in carats) and d is its diameter (in millimeters). According to the model, what is the weight of a diamond with a diameter of 15 millimeters?

CLOTHING The profit P (in millions of dollars) for a T-shirt manufacturer can be modeled by $P = -x^3 + 4x^2 + x$ where x is the number of T-shirts produced (in millions). Currently, the company produces 4 million T-shirts and makes a profit of \$4,000,000. What lesser number of T-shirts could the company produce and still make the same profit?

MP3 PLAYERS The profit P (in millions of dollars) for a manufacturer of MP3 players can be modeled by $P = -4x^3 + 12x^2 + 16x$ where x is the number of MP3 players produced (in millions). Currently, the company produces 3 million MP3 players and makes a profit of \$48,000,000. What lesser number of MP3 players could the company produce and still make the same profit?

SWIMMING POOL You are designing a rectangular swimming pool that is to be set into the ground. The width of the pool is 5 feet more than the depth, and the length is 35 feet more than the depth. The pool holds 2000 cubic feet of water. What are the dimensions of the pool?

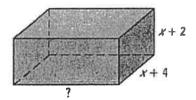

BUSINESS For the 12 years that a grocery store has been open, its annual revenue R (in millions of dollars) can be modeled by the function

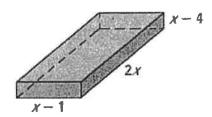

$$R = 0.0001(-t^4 + 12t^3 - 77t^2 + 600t + 13,650)$$

where t is the number of years since the store opened. In which year(s) was the revenue \$1.5 million?

GIVEN THE PERIMETER, FIND THE MISSING SIDE. $P = 2x^3 + 4x^2 + 6x + 3$

$$P = 2x^3 + 4x^2 + 6x + 3$$




A) FIND THE AREA OF THE GARDEN.

B) FIND THE AREA OF THE WALKWAY AND THE GARDEN.

$$V = 2x^3 + 17x^2 + 46x + 40$$

Volume = 40

A metal worker wants to make an open box from a 12 in by 16 inch sheet of metal by cutting equal squares from each corner. Write a function for the volume of the box. Find the maximum volume of the box and the side length of the cut out squares that generate the volume.

A rectangular picture is 12 in. by 16 in. When each dimension is increased by the same amount, the area is increased by 60 in². If x represents the number of inches by which each dimension is increased, which equation could be used to find the value for x?