Linearization 22/23

1. A differentiable function f has the property that $f(5)=3$ and $f^{\prime}(5)=4$. What is the estimate for $f(4.8)$ using the local linear approximation for f at $\mathrm{x}=5$?
(A) 2.2
(B) 2.8
(C) 3.4
(D) 3.8
(E) 4.6
2. Let f be a differentiable function such that $f(3)=2$ and $f(3)=5$. If the tangent line to the graph of f at $x=3$ is used to find an approximation to a zero of f, that approximation is
(A) 0.4
(B) 0.5
(C) 2.6
(D) 3.4
(E) 5.5
3. Let f be a differentiable function with $f(2)=3$ and $f^{\prime}(2)=\frac{1}{2}$. Using the line tangent to the graph of f at $x=2$ as a local linear approximation for f, what is the estimate for $f(1.8)$?
(A) 2.5
(B) 2.8
(C) 2.9
(D) 3.1
4. Let f be a function such that at each point (x, y) on the graph of f, the slope is given by $\frac{d y}{d x}=y^{2}-x$. The graph of f passes through the point $(1,2)$ and is concave down on the interval $1<x<1.5$. Let k be the approximation for $f(1.2)$ found by using the locally linear approximation of f at $x=1$. Which of the following statements about k is true?
(A) $k=5.6$ and is an overestimate for $f(1.2)$.
(B) $k=5.6$ and is an underestimate for $f(1.2)$.
(C) $\quad k=2.6$ and is an overestimate for $f(1.2)$.
(D) $k=2.6$ and is an underestimate for $f(1.2)$.
5.

x	3.8	4.0	4.2	4.4
$g^{\prime}(x)$	-0.8	2.2	1.8	-1.2

Selected values of the derivative of the function g are given in the table above. It is known that $g(4)=12$. What is the approximation for $g(4.2)$ found using the line tangent to the graph of g at $x=4$?

Linearization 22/23

(A) 12.44
(B) 12.40
(C) 12.36
(D) 11.60
6.

x	2.8	3.0	3.2	3.4
$g^{\prime}(x)$	1.05	-1.2	-0.8	1.3

Selected values of the derivative of the function g are given in the table above. It is known that $g(3)=17$. What is the approximation for $g(3.2)$ found using the line tangent to the graph of g at $x=3$?
(A) 16.76
(B) 16.80
(C) 16.84
(D) 17.40
7. 囲 At time $t, 0<t<2$, the velocity of a particle moving along the x-axis is given by $v(t)=t \sin \left(t^{3}\right)$. Let $t=b$ be the time at which the particle changes direction from moving left to moving right. What is the total distance traveled by the particle during the time interval $0<t<b$?
(A) 0.212
(B) 0.612
(C) 1.011
(D) 1.208

Linearization 22/23

8.

The graph of f^{\prime}, the derivative of the function f, is shown above. If $f(4)=-1$, what is the approximation for $f(4.5)$ using the line tangent to the graph of f at $x=4$?
(A) $\quad-4$
(B) -1
(C) 2
(D) 6
9. Let f be a twice-differentiable function such that $f "(x)<0$ for all x. The graph of $y=S(x)$ is the secant line passing through the points $(3, f(3))$ and $(5, f(5))$. The graph of $y=T(x)$ is the line tangent to the graph of f at $x=4$. Which of the following is true?
(A) $f(4.2)<S(4.2)<T(4.2)$
(B) $f(4.2)<T(4.2)<S(4.2)$
(C) $S(4.2)<f(4.2)<T(4.2)$
(D) $T(4.2)<f(4.2)<S(4.2)$
10. Let f be the function given by $f(x)=2 \cos x+1$. What is the approximation for $f(1.5)$ found by using the line tangent to the graph of f at $x=\Pi / 2$?

Linearization 22/23

(A) -2
(B) 1
(C) $\pi-2$
(D) $4-\pi$

