Finding the derivative

1. If $y=\left(x^{3}+1\right)^{2}$, then $\frac{d y}{d x}=$
(A) $\left(3 x^{2}\right)^{2}$
(B) $2\left(x^{3}+1\right)$
(C) $2\left(3 x^{2}+1\right)$
(D) $3 x^{2}\left(x^{3}+1\right)$
(E) $6 x^{2}\left(x^{3}+1\right)$
2. If f and g are twice differentiable functions such that $g(x)=e^{f(x)}$ and $g^{\prime \prime}(x)=h(x) e^{f(x)}$, then $h(x)=$
(A) $f^{\prime}(x)+f^{\prime \prime}(x)$
(B) $f^{\prime}(x)+\left(f^{\prime \prime}(x)\right)^{2}$
(C) $\quad\left(f^{\prime}(x)+f^{\prime \prime}(x)\right)^{2}$
(D) $\left(f^{\prime}(x)\right)^{2}+f^{\prime \prime}(x)$
(E) $2 f^{\prime}(x)+f^{\prime \prime}(x)$
3. If $f(x)=x^{2}+2 x$, then $\frac{d}{d x}(f(\ln x))=$
(A) $\frac{2 \ln x+2}{x}$
(B) $2 x \ln x+2 x$
(C) $2 \ln x+2$
(D) $2 \ln x+\frac{2}{x}$
(E) $\frac{2 x+2}{x}$
4. If $f(x)=e^{(2 / x)}$, then $f^{\prime}(x)=$
(A) $2 e^{(2 / x)} \ln x$
(B) $e^{(2 / x)}$
(C) $e^{\left(-2 / x^{2}\right)}$
(D) $-\frac{2}{x^{2}} e^{(2 / x)}$
(E) $-2 x^{2} e^{(2 / x)}$
5. If $f(x)=e^{1 / x}$, then $f^{\prime}(x)=$
(A) $-\frac{e^{1 / x}}{x^{2}}$
(B) $-e^{1 / x}$
(C) $\frac{e^{1 / x}}{x}$
(D) $\frac{e^{1 / x}}{x^{2}}$
(E) $\frac{1}{x} e^{(1 / x)-1}$

Finding the derivative

6. If $f(x)=\cos (3 x)$, then $f^{\prime}\left(\frac{\pi}{9}\right)=$
(A) $\frac{3 \sqrt{3}}{2}$
(B) $\frac{\sqrt{3}}{2}$
(C) $-\frac{\sqrt{3}}{2}$
(D) $-\frac{3}{2}$
(E) $-\frac{3 \sqrt{3}}{2}$
7. If $y=\cos ^{2} 3 x$, then $\mathrm{dy} / \mathrm{dx}=$
(A) $-6 \sin 3 x \cos 3 x$
(B) $-2 \cos 3 x$
(C) $2 \cos 3 x$
(D) $6 \cos 3 x$
(E) $2 \sin 3 x \cos 3 x$
8. How many critical points does the function $f(x)=(x+2)^{5}(x-3)^{4}$ have?
(A) One
(B) Two
(C) Three
(D) Five
(E) Nine
9. If $y=\left(x^{3}-\cos x\right)^{5}$ then $y^{\prime}=$
(A) $5\left(x^{3}-\cos x\right)^{4}$
(B) $5\left(3 x^{2}+\sin x\right)^{4}$
(C) $5\left(3 x^{2}+\sin x\right)$
(D) $5\left(3 x^{2}+\sin x\right)^{4} \cdot(6 x+\cos x)$
(E) $5\left(x^{3}-\cos x\right)^{4} \cdot\left(3 x^{2}+\sin x\right)$
10. If $f(x)=\mathrm{e}^{x}$, then $\ln \left(f^{\prime}(2)\right)=$
(A) 2
(B) 0
(C) $1 / \mathrm{e}^{2}$
(D) 2 e
(E) e^{2}

Finding the derivative

11. $\frac{d}{d x}\left(2^{x}\right)=$
(A) 2^{x-1}
(B) $\quad\left(2^{x-1}\right) x$
(C) $\left(2^{x}\right) \ln 2$
(D) $\left(2^{x-1}\right) \ln 2$
(E) $2 x / \ln 2$
12. $\mathrm{d} / \mathrm{dx}\left(\ln \mathrm{e}^{2 \mathrm{x}}\right)=$
(A) $1 / \mathrm{e}^{2 x}$
(B) $2 / \mathrm{e}^{2 \mathrm{x}}$
(C) $2 x$
(D) 1
(E) 2
13. Let f and g be differentiable functions with the following properties
(i) $g(x)>0$ for all x
(ii) $f(0)=1$ If $h(x)=f(x) g(x)$ and $h^{\prime}(x)=f(x) g^{\prime}(x)$, then $f(x)=$:
(A) $f^{\prime}(x)$
(B) $g(x)$
(C) e^{x}
(D) 0
(E) 1
14. If $y=x^{2} \sin 2 x$, then $\frac{d y}{d x}=$
(A) $2 x \cos 2 x$
(B) $4 x \cos 2 x$
(C) $2 x(\sin 2 x+\cos 2 x)$
(D) $2 x(\sin 2 x-x \cos 2 x)$
(E) $2 x(\sin 2 x+x \cos 2 x)$

Finding the derivative

15.

Shown above is a slope field for which of the following differential equations?
(A) $\frac{d y}{d x}=\frac{x}{y}$
(B) $\frac{d y}{d x}=\frac{x^{2}}{y^{2}}$
(C) $\frac{d y}{d x}=\frac{x^{3}}{y}$
(D) $\frac{d y}{d x}=\frac{x^{2}}{y}$
(E) $\frac{d y}{d x}=\frac{x^{3}}{y^{2}}$
16. An equation of the line tangent to the graph of $f(x)=x(1-2 x)^{3}$ at the point $(1,-1)$ is
(A) $y=-7 x+6$
(B) $y=-6 x+5$
(C) $y=-2 x$
(D) $y=2 x-3$
(E) $y=7 x-8$
17. If $y=\frac{2 x+3}{3 x+2}$, then $\frac{d y}{d x}=$
(A) $\frac{12 x+13}{(3 x+2)^{2}}$
(B) $\frac{12 x-13}{(3 x+2)^{2}}$
(C) $\frac{5}{(3 x+2)^{2}}$
(D) $\frac{-5}{(3 x+2)^{2}}$
(E) $\frac{2}{3}$
18. What is the instantaneous rate of change at $x=2$ of the function f given by $f(x)=\frac{x^{2}-2}{x-1}$?

Finding the derivative

(A) -2
(B) $\frac{1}{6}$
(C) $\frac{1}{2}$
(D) 2
(E) 6
19. If $y=\frac{\ln x}{x}$, then $\frac{d y}{d x}=$
(A) $\frac{1}{x}$
(B) $\frac{1}{x^{2}}$
(C) $\frac{\ln x-1}{x^{2}}$
(D) $\frac{1-\ln x}{x^{2}}$
(E) $\frac{1+\ln x}{x^{2}}$
20. If $f(x)=\tan (2 x)$, then $f^{\prime}\left(\frac{\pi}{6}\right)=$
(A) $\sqrt{3}$
(B) $2 \sqrt{3}$
(C) 4
(D) $4 \sqrt{3}$
(E) 8
21. If $y=\sin (3 x)$, then $\frac{d y}{d x}=$
(A) $-3 \cos (3 x)$
(B) $-\cos (3 x)$
(C) $-\frac{1}{3} \cos (3 x)$
(D) $\cos (3 x)$
(E) $3 \cos (3 x)$
22. If $f(x)=\sin x$, then $\mathrm{f}^{\prime}(\Pi / 3)=$
(A) $-\frac{1}{2}$
(B) $\frac{1}{2}$
(C) $\frac{\sqrt{2}}{2}$
(D) $\frac{\sqrt{3}}{2}$
(E) $\sqrt{3}$
23. If $y=\tan x-\cot x$, then $d y / d x=$

Finding the derivative

(A) $\sec x \csc x$
(B) $\sec x-\csc x$
(C) $\sec x+\csc x$
(D) $\sec ^{2} x-\csc ^{2} x$
(E) $\sec ^{2} x+\csc ^{2} x$
24. If $f(x)=\sin ^{2}(3-x)$, then $f^{\prime}(0)=$
(A) $-2 \cos 3$
(B) $-2 \sin 3 \cos 3$
(C) $6 \cos 3$
(D) $2 \sin 3 \cos 3$
(E) $6 \sin 3 \cos 3$
25. If $f(x)=\sin \left(\mathrm{e}^{-\mathrm{x}}\right)$, then $f^{\prime}(x)=$
(A) $\quad-\cos \left(\mathrm{e}^{-x}\right)$
(B) $\cos \left(\mathrm{e}^{-\mathrm{x}}\right)+\mathrm{e}^{-\mathrm{x}}$
(C) $\cos \left(\mathrm{e}^{-\mathrm{x}}\right)-\mathrm{e}^{-\mathrm{x}}$
(D) $e^{-x} \cos \left(e^{-x}\right)$
(E) $\quad-\mathrm{e}^{-\mathrm{x}} \cos \left(\mathrm{e}^{-\mathrm{x}}\right)$
26. If $f(x)=\ln \left(x+4+e^{-3 x}\right)$, then $f^{\prime}(0)$ is
(A) $-\frac{2}{5}$
(B) $\frac{1}{5}$
(C) $\frac{1}{4}$
(D) $\frac{2}{5}$
(E) nonexistent
27. If $f(x)=\left(x^{2}-2 x-1\right)^{\frac{2}{3}}$, then $f^{\prime}(0)$ is
(A) $\frac{4}{3}$
(B) 0
(C) $-\frac{2}{3}$
(D) $-\frac{4}{3}$
(E) -2
28. If $f(x)=\ln \left(x+4+e^{-3 x}\right)$, then $f^{\prime}(0)$ is

Finding the derivative

(A) $-\frac{2}{5}$
(B) $\frac{1}{5}$
(C) $\frac{1}{4}$
(D) $\frac{2}{5}$
(E) nonexistent
29. $\frac{d}{d x} \ln \left|\cos \left(\frac{\pi}{x}\right)\right|$ is
(A) $\frac{-\pi}{x^{2} \cos \left(\frac{\pi}{x}\right)}$
(B) $-\tan \left(\frac{\pi}{x}\right)$
(C) $\frac{1}{\cos \left(\frac{\pi}{x}\right)}$
(D) $\frac{\pi}{x} \tan \left(\frac{\pi}{x}\right)$
(E) $\frac{\pi}{x^{2}} \tan \left(\frac{\pi}{x}\right)$
30. $d / d x\left(1 / x^{3}-1 / x+x^{2}\right)$ at $x=-1$ is
(A) -6
(B) -4
(C) 0
(D) 2
(E) 6
31. If $f(x)=x^{\frac{3}{2}}$, then $f^{\prime}(4)=$
(A) -6
(B) -3
(C) 3
(D) 6
(E) 8
32. If $f(x)=x$, then $f^{\prime}(5)=$
(A) 0
(B) $1 / 5$
(C) 1
(D) 5
(E) $25 / 2$

Finding the derivative

33. Let f and g be differentiable functions such that

$$
\begin{aligned}
& f(1)=2, \quad f^{\prime}(1)=3, \quad f^{\prime}(2)=-4, \\
& g(1)=2, \quad g^{\prime}(1)=-3, \quad g^{\prime}(2)=5 .
\end{aligned}
$$

If $h(x)=f(g(x))$, then $h^{\prime}(1)=$
(A) -9
(B) -4
(C) 0
(D) 12
(E) 15
34. Which of the following is an equation of a curve that intersects at right angles every curve of the family $y=\frac{1}{x}+k$ (where k takes all real values)?
(A) $y=-x$
(B) $y=-x^{2}$
(C) $y=-\frac{1}{3} x^{3}$
(D) $y=\frac{1}{3} x^{3}$
(E) $y=\ln x$
35. If $f(x)=\ln (\ln x)$, then $f^{\prime}(x)=$
(A) $1 / x$
(B) $1 / \ln x$
(C) $\ln x / x$
(D) x
(E) $1 / x \ln x$
36. If $f(x)=(x-1)\left(x^{2}+2\right)^{3}$, then $f(x)=$
(A) $6 x\left(x^{2}+2\right)^{2}$
(B) $6 x(x-1)\left(x^{2}+2\right)^{2}$
(C) $\left(x^{2}+2\right)^{2}\left(x^{2}+3 x-1\right)$
(D) $\left(x^{2}+2\right)^{2}\left(7 x^{2}-6 x+2\right)$
(E) $-3(x-1)\left(x^{2}+2\right)^{2}$
37. Suppose that f is an odd function; i.e., $f(-x)=-f(x)$ for all x. Suppose that $f^{\prime}\left(x_{0}\right)$ exists. Which of the following must necessarily be equal to $f^{\prime}\left(-x_{0}\right)$?

Finding the derivative

(A) $f^{\prime}\left(x_{0}\right)$
(B) $-f^{\prime}\left(x_{0}\right)$
(C) $\frac{1}{f^{\prime}\left(x_{0}\right)}$
(D) $-\frac{1}{f^{\prime}\left(x_{0}\right)}$
(E) None of the above
38. If $f(x)=(x-1)^{\frac{3}{2}}+\frac{e^{x-2}}{2}$, then $f^{\prime}(2)=$
(A) 1
(B) $\frac{3}{2}$
(C) 2
(D) $\frac{7}{2}$
(E) $\frac{3+e}{2}$
39. If $f(x)=x+\sin x$, then $f^{\prime}(x)=$
(A) $1+\cos x$
(B) $1-\cos x$
(C) $\cos x$
(D) $\sin x-x \cos x$
(E) $\quad \sin x+x \cos x$
40. The function f is defined by $f(x)=\frac{x}{x+2}$. What points (x, y) on the graph of f have the property that the line tangent to f at (x, y) has slope $\frac{1}{2}$?
(A) $(0,0)$ only
(B) $\left(\frac{1}{2}, \frac{1}{5}\right)$ only
(C) $(0,0)$ and $(-4,2)$
(D) $(0,0)$ and $\left(4, \frac{2}{3}\right)$
(E) There are no such points.
41. What are all values of x for which the function f defined by $f(x)=\left(x^{2}-3\right) e^{-x}$ is increasing?
(A) There are no such values of x.
(B) $x<-1$ and $x>3$
(C) $-3<x<1$
(D) $-1<x<3$
(E) All values of x
42. If $y=x^{2} e^{x}$, then $\frac{d y}{d x}=$

Finding the derivative

(A) $2 x e^{x}$
(B) $x\left(x+2 e^{x}\right)$
(C) $x e^{x}(x+2)$
(D) $2 x+e^{x}$
(E) $2 x+e$
43. If $f(x)=(x-1)^{2} \sin x$, then $f^{\prime}(0)=$
(A) -2
(B) -1
(C) 0
(D) 1
(E) 2
44.

In the triangle shown above, if θ increases at a constant rate of 3 radians per minute, at what rate is x increasing in units per minute when x equals 3 units?
(A) 3
(B) $\frac{15}{4}$
(C) 4
(D) 9
(E) 12
45. If f and g are twice differentiable and if $h(x)=f(g(x))$, then $h^{\prime \prime}(x)=$
(A) $f^{\prime \prime}(g(x))\left[g^{\prime}(x)\right]^{2}+f^{\prime}(g(x)) g^{\prime \prime}(x)$
(B) $f^{\prime \prime}(g(x)) g^{\prime}(x)+f^{\prime}(g(x)) g^{\prime \prime}(x)$
(C) $f^{\prime \prime}(g(x))\left[g^{\prime}(x)\right]^{2}$
(D) $f^{\prime \prime}(g(x)) g^{\prime \prime}(x)$
(E) $f^{\prime \prime}(g(x))$
46. If $\frac{d}{d x}(f(x))=g(x)$ and $\frac{d}{d x}(g(x))=f\left(x^{2}\right)$, then $\frac{d^{2}}{d x^{2}}\left(f\left(x^{3}\right)\right)=$

Finding the derivative

(A) $f\left(x^{6}\right)$
(B) $g\left(x^{3}\right)$
(C) $3 x^{2} g\left(x^{3}\right)$
(D) $9 x^{4} f\left(x^{6}\right)+6 x g\left(x^{3}\right)$
(E) $f\left(x^{6}\right)+g\left(x^{3}\right)$
47. If $\frac{d}{d x} f(x)=g(x)$ and if $h(x)=x^{2}$, then $\frac{d}{d x}(f(h(x)))=$
(A) $g\left(x^{2}\right)$
(B) $2 x g(x)$
(C) $g^{\prime}(x)$
(D) $2 x g\left(x^{2}\right)$
(E) $x^{2} g\left(x^{2}\right)$
48. An equation of the line tangent to the graph of $y=\frac{2 x+3}{3 x-2}$ at the point $(1,5)$ is
(A) $13 x-y=8$
(B) $13 x+y=18$
(C) $x-13 y=64$
(D) $x+13 y=66$
(E) $-2 x+3 y=13$
49. If $f(x)=(\ln x)^{2}$, then $f^{\prime \prime}(\sqrt{e})=$
(A) $\frac{1}{e}$
(B) $\frac{2}{e}$
(C) $\frac{1}{2 \sqrt{e}}$
(D) $\frac{1}{\sqrt{e}}$
(E) $\frac{2}{\sqrt{e}}$
50. Let h be a differentiable function, and let f be the function defined by $f(x)=h\left(x^{2}-3\right)$. Which of the following is equal to $f(2)$?
(A) $h^{\prime}(1)$
(B) $4 h^{\prime}(1)$
(C) $4 h^{\prime}(2)$
(D) $h^{\prime}(4)$
(E) $4 h^{\prime}(4)$
51. If $f(x)=\sqrt{x^{2}-4}$ and $g(x)=3 x-2$, then the derivative of $f(g(x))$ at $x=3$ is

Finding the derivative

(A) $\frac{7}{\sqrt{5}}$
(B) $\frac{14}{\sqrt{5}}$
(C) $\frac{18}{\sqrt{5}}$
(D) $\frac{15}{\sqrt{21}}$
(E) $\frac{30}{\sqrt{21}}$

