Notation list

Of the various notations in use, the IB has chosen to adopt a system of notation based on the recommendations of the International Organization for Standardization (ISO). This notation is used in the examination papers for this course without explanation. If forms of notation other than those listed in this guide are used on a particular examination paper, they are defined within the question in which they appear.

Because students are required to recognize, though not necessarily use, IB notation in examinations, it is recommended that teachers introduce students to this notation at the earliest opportunity. Students are not allowed access to information about this notation in the examinations.

Students must always use correct mathematical notation, not calculator notation.

\mathbb{N}	the set of positive integers and zero, $\{0,1,2,3, \ldots\}$
\mathbb{Z}	the set of integers, $\{0, \pm 1, \pm 2, \pm 3, \ldots\}$
\mathbb{Z}^{+}	the set of positive integers, $\{1,2,3, \ldots\}$
\mathbb{Q}	the set of rational numbers
\mathbb{Q}^{+}	the set of positive rational numbers, $\{x \mid x \in \mathbb{Q}, x>0\}$
\mathbb{R}	the set of real numbers
\mathbb{R}^{+}	the set of positive real numbers, $\{x \mid x \in \mathbb{R}, x>0\}$
$\left\{x_{1}, x_{2}, \ldots\right\}$	the set with elements x_{1}, x_{2}, \ldots
$n(A)$	the number of elements in the finite set A
ϵ	is an element of
\notin	is not an element of
\varnothing	the empty (null) set
U	the universal set
\cup	union
\bigcirc	intersection
\subset	is a proper subset of
\subseteq	is a subset of
A^{\prime}	the complement of the set A

$p \wedge q$	conjunction: p and q
$p \vee q$	disjunction: p or q (or both)
$p \vee q q$	exclusive disjunction: p or q (not both)
$\neg p$	negation: not p
$p \Rightarrow q$	implication: if p then q
$p \Leftarrow q$	implication: if q then p
$p \Leftrightarrow q$	equivalence: p is equivalent to q
$a^{1 / n}, \sqrt[n]{a}$	a to the power $\frac{1}{n}, \mathrm{n}^{\text {th }}$ root of $a($ if $a \geq 0$ then $\sqrt[n]{a} \geq 0$)
$a^{-n}=\frac{1}{a^{n}}$	a to the power $-n$, reciprocal of a^{n}
$a^{1 / 2}, \sqrt{a}$	a to the power $\frac{1}{2}$, square root of a (if $a \geq 0$ then $\sqrt{a} \geq 0$)
$\|x\|$	the modulus or absolute value of x, that is $\left\{\begin{array}{r}x \text { for } x \geq 0, x \in \mathbb{R} \\ -x \text { for } x<0, x \in \mathbb{R}\end{array}\right.$
\approx	is approximately equal to
>	is greater than
\geq	is greater than or equal to
<	is less than
\leq	is less than or equal to
\ngtr	is not greater than
*	is not less than
u_{n}	the $n^{\text {th }}$ term of a sequence
d	the common difference of an arithmetic sequence
r	the common ratio of a geometric sequence
S_{n}	the sum of the first n terms of a sequence, $u_{1}+u_{2}+\ldots+u_{n}$

$\sum_{i=1}^{n} u_{i}$	$u_{1}+u_{2}+\ldots+u_{n}$
$f(x)$	the image of x under the function f
$\frac{\mathrm{d} y}{\mathrm{~d} x}$	the derivative of y with respect to x
$f^{\prime}(x)$	the derivative of $f(x)$ with respect to x
\sin , \cos , \tan	the circular functions
$\mathrm{A}(x, y)$	the point A in the plane with Cartesian coordinates x and y
A	the angle at A
CÂB	the angle between the lines CA and AB
$\triangle \mathrm{ABC}$	the triangle whose vertices are A, B and C
$\mathrm{P}(A)$	probability of event A
$\mathrm{P}\left(A^{\prime}\right)$	probability of the event "not A "
$\mathrm{P}(A \mid B)$	probability of the event A given the event B
x_{1}, x_{2}, \ldots	observations
f_{1}, f_{2}, \ldots	frequencies with which the observations x_{1}, x_{2}, \ldots occur
\bar{x}	mean of a set of data
μ	population mean
σ	population standard deviation
$\mathrm{N}\left(\mu, \sigma^{2}\right)$	normal distribution with mean μ and variance σ^{2}
$X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$	random variable X has a normal distribution with mean μ and variance σ^{2}
r	Pearson's product-moment correlation coefficient
χ^{2}	chi-squared

