11
 Modelling periodic phenomena: trigonometric functions

Skills check

$1 a^{2}+b^{2}=c^{2}$
$5^{2}+b^{2}=13^{2}$
$b^{2}=169-25=144$
$P R=12 \mathrm{~m}$
$\hat{P}=\sin ^{-1} \frac{5}{13}=22.6^{\circ}$.
$\hat{Q}=\sin ^{-1} \frac{12}{13}=67.4^{\circ}$.
$2 h=73 \tan (43)=68.1$

3 a

Solution for
$x \leq 0$ is -11.5
b

Solution for
$t>0$ is 2.08

Exercise 11A

1 a $\theta=\sin ^{-1} \frac{30}{70}=25.4$. So the values of θ are 25.4, 180 - 25.4, $180+25.4,360-25.4$.

All possible values are $25.4^{\circ}, 155^{\circ}, 205^{\circ}, 335^{\circ}$.
b $\theta=\sin ^{-1} \frac{20}{70}=16.6$. The values are: $90-16.6=73.4^{\circ}$ and $270+16.6=287^{\circ}$.

2 a i

Solutions are $\theta_{1}=45^{\circ}, 225^{\circ}$.

ii

Solutions are $\theta_{2}=53.1^{\circ}, 126.9^{\circ}$.
iii

Solutions are $\theta_{3}=95.7^{\circ}, 264.3^{\circ}$.
b i $\quad \theta_{1}=45, \quad(x, y)=(-70 \sin (45), 70 \cos (45))=(-49.5,49.5)$
$\theta_{1}=225 \quad(x, y)=(-70 \sin (225), 70(\cos (225))=(49.5,-49.5)$
ii $\theta_{2}=53.1 \quad(x, y)=(-70 \sin (53.1), 70 \cos (53.1))=(-56.0,42.0)$
$\theta_{2}=126.9 \quad(x, y)=(-70 \sin (126.9), 70 \cos (126.9))=(-56.0,-42.0)$
iii $\theta_{3}=95.7 \quad(x, y)=(-70 \sin (95.7), 70 \cos (95.7))=(-69.7,-6.95)$
$\theta_{3}=264.3 \quad(x, y)=(-70 \sin (264.3), 70 \cos (264.3))=(69.7,-6.95)$

3 a $T(4)=-11 \cos (30 \times 4)+7.5=13$
b

The temperature will be zero in the middle of February and November.
4 a $D(5.5)=1.8 \sin (30 \times 5.5)+12.3=12.8 \mathrm{~m}$
b

Depth of 10.9 after 7.7 hours, 10.2 hours, 19.7 hours and 22.3 hours.

Exercise 11B

1 a Amplitude is 3 , period is $90^{\circ}, y=1$ is principal axis and the range is $\{y$: $-2 \leq y \leq 4\}$
b Amplitude is 0.5 , period is 720°, principal axis is $y=-3$ and range is $\{y:-3.5 \leq y \leq-2.5\}$
c Amplitude is 7.1 , period is 120°, principal axis is $y=1$ and the range is $\{y:-6.1 \leq y \leq 8.1\}$
d Amplitude is 5 , period is 720°, principal axis is $7=8.1$ and the range is $\{y: 3.1 \leq y \leq 13.1\}$
2 a $a=2$
b $a=1, b=2$
c $a=3, b=0.5, d=-1$
3 a $b=2$
b $a=-3, d=1$
c $a=2.5, b=0.5, d=0$
4 a $t=\frac{5.2+1}{2}=3.1 . \quad s=-\frac{5.2-1}{2}=-2.1 . \quad r=\frac{90}{2}=45$.
b it
ii s
iii $\frac{360}{r}=8$

5 a $\quad d=\frac{4.6-6.2}{2}=-0.8 . \quad a=\frac{4.6+6.2}{2}=5.4$.

$$
b=\frac{180}{2}=90
$$

b a is the highest amount above sea level. b is the number of cycles in 6 hours. d is sea level.
6 a

b $r=10, s=\frac{360}{5}=72$

7 You can draw a sample space diagram for the sum of a and d, the only parameters to affect the maximum and minimum of the function, as follows:
d

	a			
	1	2	3	4
1	2	3	4	5
2	3	4	5	6
3	4	5	6	7

There are three possibilities in a sample space of 12 with a maximum greater than five,
hence the probability required is $\frac{3}{12}=0.25$

Exercise 11C

1 a

b $\quad a=\frac{13.4-4.1}{2}=4.65 . \quad d=\frac{13.4+4.1}{2}=8.75 . \quad b=\frac{360}{20-12}=45$ $y=4.65 \sin (45 x)+8.75$

2 a

b $\quad a=\frac{10.1-4}{2}=3.05, \quad d=\frac{10.1+4}{2}=7.05, \quad b=\frac{360}{12}=30$.
The data is modelled by $y=3.05 \cos (30 x)+7.05$
c $\frac{1}{30} \cos ^{-1}\left(-\frac{21}{61}\right)=3.67$, between 0000 and 0340 hours and between 0820 and 1200 hours.
3 a

b $\quad a=0.9961, b=\frac{360}{6 \times 10^{-4} \times 4}=150000, \quad d=0$.
$D(t)=0.9961 \sin (150000 t)$
c $D(0.00011)=0.9961 \sin (150000 \times 0.00011)=0.283$ decibels
d $D(0.002)=0.9961 \sin (150000 \times 0.002)=-0.863$ decibels
e Part \mathbf{c} is more reliable as 0.00011 falls within the given data range while 0.002 is outside of it.
$4 \quad \mathbf{a} \quad a=\frac{10.1-5.31}{2}=2.395, \quad d=\frac{(10.1+5.31)}{2}=7.705, \quad b=1$
$y=2.395 \cos (\alpha)+7.705$.
b $A D^{2}=A B^{2}+B D^{2}-2(A B)(B D) \cos (180-\alpha-\beta)$
$A D=\sqrt{65.05-36.96 \cos (180-\alpha-\beta)}$
c Model is a reasonable fit, but cannot be accurate as the cosine rule depends on two angles and not just one.
5 a

Month(t)	Rise	Set
0	11.33	15.7
1	10.15	17.22
2	8.62	18.72
3	6.78	20.27
4	5.02	21.82
5	3.4	23.45
6	3.08	23.95
7	4.57	22.57
8	6.15	20.78
9	7.58	19.00
10	9.15	17.22
11	10.73	15.82

This is necessary so that they can be graphed on the cartesian plane, which uses decimal notation.
b $r: \quad a=\frac{(11.33-3.08)}{2}=4.125, \quad b=\frac{360}{12}=30, \quad d=\frac{11.33+3.08}{2}=7.205$

$$
\begin{aligned}
& r(t)=4.125 \cos (30 t)+7.205 \\
& s: \quad a=\frac{(23.95-15.7)}{2}=4.125, \quad b=\frac{360}{12}=30, \quad d=\frac{23.95+15.7}{2}=19.825
\end{aligned}
$$

$$
s(t)=-4.125 \cos (30 t)+19.825
$$

c

i Around 3 months or 90 days
ii Around 6 months have at least 12 hours while around 4 have no more than 18 . So around $\frac{1}{4}$ of the year has at least 12 hours but no more than 18

6 a $a=\frac{6.87-4.88}{2}=0.995, \quad b=\frac{360}{12}=30, \quad d=\frac{6.87+4.88}{2}=5.875$
$r(t)=0.995 \cos (30 t)+5.875$
b Karim can arrive at least 1 hour before sunset without arriving earlier than 0500 between the dates of 7th October through to the following year on 24th March.
7 a $a=\frac{30-0}{2}=15, \quad b=\frac{360}{0.06}=6000, \quad d=\frac{30}{2}=15$
$y=-15 \cos (6000 t)+15$
b The dot travels $30 \pi \mathrm{~cm}$ in 0.06 s . So the speed of the fan is $\frac{30 \pi}{0.06}=500 \pi \mathrm{cms}^{-1}$.

Chapter review

1

Solutions are $t=499$ and 581
2 a $\quad y=-\cos (3 x)-1 . \quad$ b $\quad y=3 \sin (0.5 x)-1 \quad$ c $\quad y=-\sin (x)+3$
$3 a(x)$ is not periodic. $b(x)$ is not periodic. $c(x)=3(-2 \cos (x))=-6 \cos (x)$.
Period is 360°, amplitude is 6 and the principal axis is $y=0$.
$d(x)=-2 \cos (3 x)$. Period is 120°, amplitude is 2 , the principal axis is $\mathrm{y}=0$.
4 a $a=\frac{(3+1)}{2}=2, b=\frac{360}{(270-180) \times 2}=2, d=\frac{3-1}{2}=1 . y=-2 \cos (2 x)+1$.
b $\quad \beta=-1$
5 a Maximum value is 18.77 m and the minimum value is 17.83 m b

First time after 19 s to reach 18 m is 19.63 s

6 a $a=\frac{6+16-6}{2}=8, b=\frac{360}{2 \times 102}=\frac{30}{17}, d=\frac{6+16+6}{2}=14 . y=8 \sin \left(\frac{30}{17} x\right)+14$ or $y=-8 \sin \left(\frac{30}{17} x\right)+14$
b $F=(204,14), A=(255,22)$
7 a Minimum is 1.8
Maximum is 6.4
A1
b Using GDC
M1
$x=268^{\circ} \quad$ A1
$x=452^{\circ}$
A1
8 The principal axis is $\frac{5.5+1.5}{2}(=3.5)$. Hence $p=3.5$
M1A1

The amplitude is $\frac{5.5-1.5}{2}=2$. Hence $q=2$
M1A1
The period is $120^{\circ}: 120^{\circ}=\frac{360^{\circ}}{r}$
Hence $r=3$, So $y=3.5+2 \cos 3 x$
9 a

b $y=0$
c $f(x)=-5$ when $x=48.6^{\circ}, 86.4^{\circ}, 137^{\circ}, 176^{\circ}$
Solution is therefore $48.6^{\circ}<x<86.4^{\circ}$ and $137^{\circ}<x<176^{\circ} \quad$ A1A1
$\mathbf{1 0}$ The amplitude is $3 \quad$ M1
Hence $p=3$
A1
The period is $81^{\circ}-\left(-9^{\circ}\right)=90^{\circ} \quad$ M1
$90^{\circ}=\frac{360^{\circ}}{q}$
A1
Hence $q=4$
So $y=3 \sin (4 x+r)$
$y=0$ when $x=36^{\circ}$ (equidistant from -9° and 81°)
M1
So $0=3 \sin \left(144^{\circ}+r\right)$
M1
So $\sin \left(144^{\circ}+r\right)=0$ and the first positive root is when $r=36^{\circ}$
Therefore $y=3 \sin \left(4 x+36^{\circ}\right)$
11a 0.3
b $y_{\text {MIN }}=5.4 \quad \mathrm{~A} 1$
First occurs when $12.5 x=180$ M1

$$
x=\frac{180}{12.5}=14.4
$$

c Period $=\frac{360}{12.5}=28.8$

12 a

b The principal axis is $\frac{16+4}{2}=(10)$. Hence $p=10 \quad$ M1A1
The amplitude is $\frac{16-4}{2}(=6)$. Hence $q=6 \quad$ M1A1
The period is $2 \times 60^{\circ}=120^{\circ} \quad$ M1
$120^{\circ}=\frac{360^{\circ}}{r} \quad$ A1
Hence $r=3$. So $y=10-6 \sin 3 x \quad$ A1
13 Amplitude $=2$, so $b=2$ A1
At $\left(60^{\circ}, 5\right), 5=a+2 \quad$ M1A1
So $a=3$
Therefore $y=3+2 \sin c x$
By symmetry, the curve goes through the point $\left(180^{\circ}, 1\right)$
So $1=3+2 \sin (180 c)$
$-1=\sin (180 c)$
$180 c=270$
Therefore $c=\frac{3}{2}$ A1

Therefore $y=3+2 \sin \left(\frac{3 x}{2}\right)$

```
14 a \(D=\frac{22+12}{2}=17 \quad\) M1A1
    \(A=\frac{22-12}{2}=5\)
                                    M1A1
    The period is \(\frac{360}{B}=24 \quad\) M1
    Therefore \(B=15\)
    A1
    So \(T=5 \sin (15(t-C))+17\)
    At \((3,12), 12=5 \sin (15(t-C))+17 \quad\) M1
    \(-1=\sin (15(3-C))\)
    \(15(3-C)=-90\)A1
\(C=9\)
A1
Therefore \(T=5 \sin (15(t-9))+17\)
b Solving \(T=5 \sin (15(t-9))+17\) and \(T=20\) by GDC M1
Solutions are \(T=18.54\) and \(T=11.46\) A1A1
18.54-11.46
\(=7.08\) hours ( 7 hours 5 minutes)A1
```


12 Analysing rates of change: differential calculus

Skills check

1 a $(x-5)(3 x+2)=3 x^{2}-13 x-10$
b $6 x^{3}+7 x^{2}-5 x$
$2 y=\frac{1}{2}(11-x)$
3 Volume: $32 \pi \mathrm{~cm}^{3}$, surface area: $16 \pi+8 \sqrt{13} \pi \mathrm{~cm}^{2}$
4 a x^{-5}
b x^{-1}
520

Exercise 12A

a i $y^{\prime}=0$
ii $y^{\prime}=0$ at $x=1$ (the tangent to y is stationary at $x=1$).
iii The function is stationary for any value of x.
b i $y^{\prime}=4$
ii $y^{\prime}=4$ at $x=1$ (the tangent to y is increasing at $x=1$).
iii Since $y^{\prime}=4>0$, the function is increasing for any value of x.
c i $\frac{\mathrm{d} f}{\mathrm{~d} x}=3 \times 2 x^{2-1}=6 x$
ii $\frac{\mathrm{d} f}{\mathrm{~d} x}=6$ at $x=1$ (the tangent to $f(x)$ is increasing at $x=1$).
iii The function is increasing when $6 x>0$. This is equivalent to $x>0$.
d i $\frac{\mathrm{d} f}{\mathrm{~d} x}=5 \times 2 x^{2-1}-3=10 x-3$
ii $\frac{\mathrm{d} f}{\mathrm{~d} x}=10 \times 1-3=7$ at $x=1$ (the tangent to $f(x)$ is increasing at $x=1$).
iii The function is increasing when $10 x-3>0 \Leftrightarrow x>\frac{3}{10}$.
e i $\frac{\mathrm{d} f}{\mathrm{~d} x}=3 \times 4 x^{4-1}+7=12 x^{3}+7$
ii $\frac{\mathrm{d} f}{\mathrm{~d} x}=12 \times 1^{3}+7=19$ at $x=1$ (the tangent to $f(x)$ is increasing at $x=1$).
iii The function is increasing when $12 x^{3}+7>0$. This inequality can re-arranged to $x^{3}>-\frac{7}{12}$, or $x>\sqrt[3]{-\frac{7}{12}}=-0.836$ (3 s.f.)
f i $\quad \frac{\mathrm{d} f}{\mathrm{~d} x}=5 \times 4 x^{4-1}-3 \times x^{2-1}+2=20 x^{3}-6 x+2$
ii $\frac{\mathrm{d} f}{\mathrm{~d} x}=20 \times 1^{3}-6 \times 1+2=16$ at $x=1$ (the tangent to $f(x)$ is increasing at $x=1$).
iii The function is increasing when $20 x^{3}-6 x+2>0$. The function $g(x)=20 x^{3}-6 x+2$ has a single root at $x=-0.670$ (which is found by solving $g(x)=0$). Therefore, the derivative $f^{\prime}(x)$ is increasing when $x>-0.670$.
g i First note that $y=2 x^{2}-3 x^{-1}$, so $y^{\prime}(x)=2 \times 2 x^{2-1}-3 \times(-1) x^{-1-1}=4 x+3 x^{-2}=4 x+\frac{3}{x^{2}}$
ii $y^{\prime}=4 \times 1+\frac{3}{1^{2}}=4+3=7$ at $x=1$ (the tangent to y is increasing at $x=1$).
iii The function is increasing when $4 x+\frac{3}{x^{2}}>0$. Solving $4 x+\frac{3}{x^{2}}=0$ (for $x \neq 0$) shows that the equation $y^{\prime}=0$ has a single root at $x=x_{r}=-\sqrt[3]{\frac{3}{4}}$. When $x>x_{r}, 4 x+\frac{3}{x^{2}}>0$, when $x<x_{r}, 4 x+\frac{3}{x^{2}}<0$ (this can be verified using, for example, a graphical calculator). Therefore, the function $y=2 x^{2}-\frac{3}{x}$ is increasing when $x>-\sqrt[3]{\frac{3}{4}}$.
h i First write $y=6 x^{-3}+4 x-3$. Therefore, $y^{\prime}=6 \times(-3) x^{-3-1}+4=-18 x^{-4}+4=-\frac{18}{x^{4}}+4$
ii $y^{\prime}=-\frac{18}{1^{4}}+4=-14$ at $x=1$ (the tangent to y is decreasing at $x=1$).
iii The function $g(x)=-\frac{18}{x^{4}}+4$ has roots $(g(x)=0)$ at $x= \pm 1.46$. When $x\langle-1.46, g(x)\rangle 0$, when $-1.46<x<1.46, g(x)<0$, and when $x>1.46, g(x)>0$. Therefore, the function $y=\frac{6}{x^{3}}+4 x-3$ is increasing when $x>1.46$ and when $x<-1.46$.
i i First expand: $y=(2 x-1)(3 x+4)=6 x^{2}+5 x-4$, so $y^{\prime}=12 x+5$.
ii $y^{\prime}=12 \times 1+5=17$ at $x=1$ (the tangent to y is increasing at $x=1$).
iii y is increasing when $y^{\prime}=12 x+5>0$, which may be re-arranged to $x>-\frac{5}{12}$.
j i Expand: $f(x)=2 x^{4}-8 x^{2}-10 x$, so $f^{\prime}(x)=8 x^{3}-16 x-10$.
ii $f^{\prime}(1)=8 \times 1^{3}-16 \times 1-10=-18$ (the tangent to $f(x)$ is decrease \backslash ng at $x=1$).
iii The only solution of $f^{\prime}(x)=0$ is $x=1.66$. Therefore, $f^{\prime}(x)>0$ (f is increasing) when $x>1.66$.
\mathbf{k} i First write $y=7 x^{-3}+8 x^{4}-6 x^{2}+2$. Then
$y^{\prime}=-3 \times 7 \times x^{-3-1}+8 \times 4 x^{4-1}-6 \times 2 x^{2-1}=-21 x^{-4}+32 x^{3}-12 x$.
ii $y^{\prime}=-\frac{21}{1^{4}}+32 \times 1^{3}-12 \times 1=-1$ at $x=1$ (the tangent to y is decreasing at $x=1$).
iii $y^{\prime}=0$ has a single solution $x=1.01$, with $y^{\prime}>0$ when $x>1.01$ and $y^{\prime}<0$ when $x<1.01$. Therefore y is increasing when $x>1.01$.

Exercise 12B

1 a $\frac{\mathrm{d} A}{\mathrm{~d} r}=2 \pi r^{2-1}=2 \pi r \quad$ b $\frac{\mathrm{d} A}{\mathrm{~d} r}=2 \pi \times 2=4 \pi$ when $r=2$.
2 a $\frac{\mathrm{d} P}{\mathrm{~d} c}=-0.056 \times 2 c^{2-1}+5.6=-0.112 c+5.6$
b When $c=20, \frac{\mathrm{~d} P}{\mathrm{~d} c}=-0.112 \times 20+5.6=3.36$, when $c=60, \frac{\mathrm{~d} P}{\mathrm{~d} c}=-0.112 \times 60+5.6=-1.12$.
c At the larger number of sales, selling more cupcakes will actually decrease profit, whilst it will increase profit at the lower value.
3 a $f^{\prime}(t)=80 \times 2 t^{2-1}-160=160 t-160=160(t-1)$
b The function $f^{\prime}(t)$ represents the velocity of the bungee jumper.
c $f^{\prime}(0.5)=160(0.5-1)=-80, f^{\prime}(1.5)=160(1.5-1)=80$. At these times, the bungee jumper is travelling at the same speed, but in opposite directions (moving away from start point at $t=0.5$ and towards the start point at $t=1.5$).
d $f(2)=160(2-1)=160=f(0)$. The bungee jumper passes through the start point at the same speed that he left at - this is unrealistic; some energy will be lost overcoming, for example, air resistance.
$4 f^{\prime}(x)=3 x^{2}+2 x+2$. The gradient at A and B is 3 , so the x-co-ordinates of these points satisfy $3=f^{\prime}(x)=3 x^{2}+2 x+2 \Rightarrow 3 x^{2}+2 x-1=0$. This equation has solutions $x_{1}=-1, x_{2}=\frac{1}{3}$. The corresponding y co-ordinates are $y_{1}=f(-1)=(-1)^{3}+(-1)^{2}+2(-1)=-2$, and $y_{2}=f\left(\frac{1}{3}\right)=\left(\frac{1}{3}\right)^{3}+\left(\frac{1}{3}\right)^{2}+\frac{2}{3}=\frac{22}{27}$.
The co-ordinates of points A and B are $(-1,-2)$ and $\left(\frac{1}{3}, \frac{22}{27}\right)$.
5 The pink line has a gradient of $m=\tan ^{-1} 45^{\circ}=1$. Also note that $h^{\prime}(x)=2-0.2 x$. Therefore, the pink and purple lines meet where the gradient of the purple line equals the gradient of the pink line: $m=2-0.2 x \Rightarrow x=5$. The point of intersection has y co-ordinate of $h(5)=2 \times 5-0.1 \times 5^{2}=7.5$ - the point is 7.5 m above the ground.

Exercise 12C

1 At $x=3, y=f(3)=2 \times 3^{2}-4=14$. Also, $f^{\prime}(x)=4 x$ so the gradient of the tangent at $x=3$ is $m=f^{\prime}(3)=12$. Therefore, the tangent at $x=3$ has equation $y-14=12(x-3) \Rightarrow y=12 x-22$.

2 The y-co-ordinate of the point of contact is $y=f(1)=-1^{2}+2=1$. Also, $f^{\prime}(x)=-2 x+2$, so the gradient of the tangent at $x=1$ is $f^{\prime}(1)=-2+2=0$. Therefore, the tangent at $x=1$ (i.e. the equation of the plank) is simply the constant function $y=1$.

3 a $f^{\prime}(x)=-4 x \Rightarrow f^{\prime}(1)=-4$; the gradient of the wheel at $x=1$ is -4 .
b The gradient of the spoke is therefore $-\frac{1}{-4}=\frac{1}{4}$.
4 First find the gradient m of the tangent to $f(x)$ at $x=1$: $f^{\prime}(x)=6 x-4$, so $m=f^{\prime}(1)=2$. The normal at this point has gradient of $-\frac{1}{m}=-\frac{1}{2}$. Therefore, the equation of the normal at $(1,4)$ is $y-4=-\frac{1}{2}(x-1) \Rightarrow y=-\frac{x}{2}+\frac{9}{2}$.
5 At $x=2, y=2^{4}-6 \times 2+3=7$. The derivative of y is $y^{\prime}(x)=4 x^{3}-6$, so the gradient of the tangent at $x=2$ is $m=4\left(2^{3}\right)-6=26$. The tangent, therefore, has equation $y-7=26(x-2) \Rightarrow y=26 x-45$ and the normal (which has gradient $-1 / m$) has equation $y-7=-\frac{1}{26}(x-2) \Rightarrow y=\frac{92}{13}-\frac{x}{26}$.
$6 f^{\prime}(x)=2 x$, so the gradient of the tangents at $x=2, x=-2$ are $m_{1}=4, m_{2}=-4$ (respectively). The equations of the normals are, therefore, $y-2^{2}=-\frac{1}{4}(x-2) \Rightarrow y=-\frac{1}{4} x+\frac{9}{2}$ and $y-22=\frac{1}{4}(x+2) \Rightarrow y=\frac{1}{4} x+\frac{9}{2}$. The normals therefore meet at $x=0$ (by setting the two normals equal to each other); at this point $y=\frac{9}{4}$: the fountain will be placed at $\left(0, \frac{9}{4}\right)$.

7 a

b $f(15)=58.8=f(35)$. Also, $f^{\prime}(x)=-0.224 x+5.6$, so $f^{\prime}(15)=2.24, f^{\prime}(35)=-2.24$. Therefore, the normal at $x=15$ has equation $y-f(15)=-\frac{1}{f^{\prime}(15)}(x-15) \Rightarrow y=65.5-0.446 x$ and the normal at $x=35$ has equation $y-f(35)=-\frac{1}{f^{\prime}(35)}(x-35) \Rightarrow y=43.1+0.446 x$.
c The normal meet where $43.1+0.446 x=65.5-0.446 x \Rightarrow 22.4=0.892 x \Rightarrow x=25.1$ (3 s.f.). At this point, $y=43.1+0.446 \times 25=54.3$.
d Yes, position is within the park.
$8 f^{\prime}(x)=2 a x+3$. Since $f^{\prime}(2)=7$, then $4 a+3=7 \Rightarrow a=1$. Then $b=f(2)=a \times 2^{2}+3 \times 2-1=9$.
9 First find k using the fact that $f^{\prime}(1)=2 \times 1+k=3 \Rightarrow k=1$ (since $f^{\prime}(x)=2 x+k$). Then $b=f(1)=1^{2}+k+3=5$.
10 Since $y=-2$ when $x=1$, then we must have $-2=a+b+1$. Also, the gradient of the tangent at $x=1$ is $y^{\prime}(1)=2 a+b$ (since $\left.y^{\prime}(x)=2 a x+b\right)$. Therefore, the normal at $x=1$ has gradient $-\frac{1}{y^{\prime}(1)}=-\frac{1}{2 a+b}$ and hence $1=-\frac{1}{2 a+b} \Rightarrow 2 a+b=-1$. We need to simultaneously solve $-2=a+b+1$ and $2 a+b=-1$; the solution is $a=2, b=-5$.

Exercise 12D

1 a $y^{\prime}(3)=\frac{3}{4}$
b $\quad y^{\prime}(3)=1+\ln 3=2.10$ (3 s.f.).
c $f^{\prime}(3)=\frac{55}{36}$
d $y^{\prime}(3)=\frac{-47}{196}$
e $\quad y^{\prime}(3)=7 e^{6}=2824$
f $\quad g^{\prime}(3)=672$

Exercise 12E

1 a $f^{\prime}(t)=7.25-2 \times 1.875 t=7.25-3.75 t$
b At the stationary point, $f^{\prime}(t)=7.25-3.75 t=0 \Rightarrow t=1.93$ (3 s.f.). At this time, $f(t)=1+7.25 \times 1.93-1.875 \times(1.93)^{2}=8.01$ (3 s.f.) : the stationary point is at $(1.93,8.01$)
c When $t<1.93$, then $3.75 t<7.25$ so $f^{\prime}(t)>0$ and when $t>1.93$, then $3.75 t>7.25$, so $f^{\prime}(t)<0$, hence $t=1.93 \mathrm{~s}$ is a maximum.

2 a

b $\quad P(2)=0.08 \times 2^{3}-1.9 \times 2^{2}+15.2 \times 2=18.04, P(3)=0.08 \times 3^{3}-1.9 \times 3^{2}+15.2 \times 3=22.56$. The gradient of the chord between $(2, P(2))$ and $(3, P(3))$ is therefore $m=\frac{22.56-18.04}{3-2}=4.52$; the average rate of change between $x=2$ and $x=3$ is 4.52 thousands of dollars per million units sold.
c $P^{\prime}(x)=0.24 x^{2}-3.8 x+12.5$, so $P^{\prime}(3)=3.26, P^{\prime}(8)=-2.54, P^{\prime}(13)=3.66$. These represent the instantaneous rate of change of profit with respect to units sold.
d The instantaneous rate of change is negative when $P^{\prime}(x)<0$ and positive when $P^{\prime}(x)>0$. The equation $P^{\prime}(x)=0$ has solutions $x=4.66,11.2$. Therefore, the instantaneous rate of change is negative when $4.66<x<11.2$ and instantaneous rate of change is positive when $x<4.66$ and $x>11.2$.
This means that profit increases with more sales when $x<4.66$ and $x>11.2$ but profit will decrease with more sales when $4.66<x<11.2$.
e The instantaneous rate of change is zero when $x=4.66,11.2$.
f At the points where $P^{\prime}(x)=0$ (i.e. $x=4.66,11.2$), then $P(x)=25.1,14.1$ (respectively). We can see from the sketch that the gradient function $P^{\prime}(x)$ changes sign at these points, i.e. they are indeed (local) maxima and minima.
3 The maximum height is $f=4$ at $t=6$.
4 Find the stationary points of the profit function by solving $P^{\prime}(n)=-0.112 n+5.6=0 \Rightarrow n=50$.
(Note that when $n\left\langle 50, P^{\prime}(n)\right\rangle 0$ and when $n>50, P^{\prime}(n)<0$ so this is indeed a maximum). At this point, the profit is $P(50)=U S \$ 120$.

5 a i $P(n)=0.5 n+1.5+\frac{4}{n+1}$: the stationary points of $P(n)$ occur (for $0<n<5$) at $n=1.82$. This is a local minimum and there are no other stationary points for $0<n<5$, so the maximum profit occurs at either $n=0$ or $n=5$ (in this range). Since $P(0)=5.5, P(5)=4.67$ then, under this model, they should buy no parts to maximise profit! (The profit will be 55000 EUR).
ii $P(n)=\frac{n^{3}}{3}-\frac{5 n^{2}}{2}+6 n-4$: the stationary points of $P(n)$ occur (for $0<n<5$) at $n=2$ (local maximum) and $n=3$ (local minimum), with $P(2)=\frac{2}{3}, P(3)=\frac{1}{2}$. Also, $P(0)=-4, P(5)=\frac{31}{6}$. Therefore, under this model, the profit is maximised by buying 5000 parts, which gives a profit of 51667 EUR.
iii $P(n)=\frac{n^{3}}{24}-\frac{5 n^{2}}{8}+3 n$: the stationary point of $P(n)$ occurs (for $0<n<5$) at $n=4$ (local maximum), with $P(4)=\frac{14}{3}$. There are no other turning points in $0<n<5$ so this local maximum is at the maximum value of $P(n)$ on $0<n<5$. Therefore, under this model, the factory should by 4000 parts, which gives a profit of 46666 EUR.
b They should adopt the first strategy.
$6 y^{\prime}(x)=-0.324 x^{3}+2.67 x^{2}-5.74 x+3$. By solving $y^{\prime}(x)=0$, we find stationary points at $x=0.776$ (local max), $x=5.15$ (local max) and $x=2.31$ (local min). Since $y(0.776)=0.986, y(5.15)=3.92$ then we determine that the maximum height on the route is 392.

Exercise 12F

1 a The volume of a cylinder is the product of its cross sectional area (in this case πr^{2}) and its height h, therefore, as the volume is $400 \mathrm{~cm}^{3}$, we have $400=\pi r^{2} h$.
b The surface area of the curved surface is $A_{c}=2 \pi r h$ and the area of the base is $A_{b}=\pi r^{2}$. Hence the total surface area is $A=A_{c}+A_{h}=2 \pi r h+\pi r^{2}$.
c Using part a, we can expressed A_{c} as $A_{c}=\frac{2\left(\pi r^{2} h\right)}{r}=2 \times \frac{400}{r}=\frac{800}{r}$. Using this form, the total surface area is $A=\pi r^{2}+\frac{800}{r}$.
d

e The minimum area is $\min A=239$ at $r=5.03$.
f This can be verified graphically.
2 Using the same method as q1: the surface area of a closed cylinder of radius r and height h is $A=2 \pi r h+2 \pi r^{2}$, and the volume is $V=\pi r^{2} h$. If we're given that the total surface area is 5000 cm^{2}, we can express h in terms of $r: A=5000=2 \pi r h+2 \pi r^{2} \Rightarrow h=\frac{5000-2 \pi r^{2}}{2 \pi r}$. Hence, the volume can be expressed only in terms of the radius as $V(r)=\frac{r\left(5000-2 \pi r^{2}\right)}{2}$.
$V(r)$ has a maximum of $V=27145$ at $r=16.3$, at 16 the gradient is positive and at 17 it is negative, so $r=16.3$ is a maximum.
3 a The perimeter is $p=100=2 x+2 /$, where / is the length of the garden. Therefore, $I=50-x$.
b The area is the product of the length and the width, i.e. $A=x I=x(50-x) \mathrm{m}^{2}$.
c $\frac{\mathrm{d} A}{\mathrm{~d} x}=50-2 x$
d $\frac{\mathrm{d} A}{\mathrm{~d} x}=0$ when $x=25$. This is indeed a maximum as $\frac{\mathrm{d} A}{\mathrm{~d} x}>0$ when $x<25$ and $\frac{\mathrm{d} A}{\mathrm{~d} x}<0$ when $x>25$. Therefore, the maximum area of the grass is $A=25^{2}=625 \mathrm{~m}^{2}$, which occurs when the garden is a $25 \mathrm{~m} \times 25 \mathrm{~m}$ square.

4 The volume of a cone with radius r and height $h=18-r$ is $V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi r^{2}(18-r)$. $V^{\prime}(r)=\frac{1}{3} \pi\left(36 r-3 r^{2}\right)$, so $V^{\prime}(r)=0$ has solutions $r=0, \pm 12$. We restrict ourselves to $r>0$, so the only turning point is $r=12$. This is a maximum because $V^{\prime}(r)<0$ when $r>12$ and $V^{\prime}(r)>0$ when $0<r<12$.

Therefore, the maximum volume of the cone is $V=V(12)=288 \pi=905 \mathrm{~cm}^{3}$, when $r=12$ (3 s.f.).

5 a We can imagine that, after removing the squares, the sides of the rectangle are split into three pieces, which have length x, x and $20-2 x$ on one side (the first two correspond to the removed sections, and the latter to the remaining section), and x, x and $24-2 x$ on the other side. The resulting box therefore has a base of size $20-2 x \times 24-2 x$ and height x; the volume of the box is $V=x(20-2 x)(24-2 x)$.
b Expanding, we have $V=4 x^{3}-88 x^{2}+480 x$, and hence $V^{\prime}(x)=12 x^{2}-176 x+480$. The stationary points of V are at $V^{\prime}(x)=0$, which has two solutions in the range $0<x<\frac{24}{2}$ at $x=3.62,11.0$. The second of these corresponds to a negative volume, so is ignored. The former is a local maximum with $V(3.62)=774.16$. Since $V(0)=0=V(24)$, this is a maximum on the interval of interest: $0<x<12$.
The value of x which maximises the volume is $x=3.62 \mathrm{~cm}$ which provides a volume of $V=774 \mathrm{~cm}^{3}$.

6 a The volume is $V=\pi r^{2} h$
b The surface area of the curved part is $A_{c}=2 \pi r h$ and the surface area of the ends are each $A_{e}=\pi r^{2}$. Therefore, the total surface area is $A=A_{c}+2 A_{e}=2 \pi r^{2}+2 \pi r h$.

We can use the volume constraint to write the r in terms of $h: 300=\pi r^{2} h \Rightarrow h=\frac{300}{\pi r^{2}}$, so $A=2 \pi r^{2}+\frac{600 \pi r}{\pi r^{2}}=2 \pi r^{2}+\frac{600}{r}$
c $A^{\prime}(r)=4 \pi r-\frac{600}{r^{2}}$, so the only stationary point is at $r=r_{1}=\sqrt[3]{\frac{150}{\pi}}$, and this is a local minimum (this can be seen by, for example, plotting the graph of $A(r)$). Therefore, the minimum surface area is $A\left(r_{1}\right)=248 \mathrm{~cm}^{2}$ which occurs at $r=r_{1}=3.63 \mathrm{~cm}$ and $h=7.25$.
$7 P^{\prime}(n)=-0.184 n+33.3$, so the only stationary point of P in $n>0$ occurs at $n=\frac{-33.3}{0.184}=180.9$.
This is a maximum point of the function P (a quadratic with a negative leading co-efficient has a single global maximum at its turning point), but the quantity n can only take integer values. The maximum profit is therefore attained at the next largest or next smallest integer to $n=180.9$. We calculate $P(180)=2700.2<2700.29=P(181):$ the maximum profit is $\$ 2700.29$, when $n=181$ goods are sold per day.
$8 f^{\prime}(x)=-1.8 x+52$, so the only turning point of f occurs when $x=x_{1}=\frac{52}{1.8}=28.9$. This is a maximum because $f^{\prime}(x)>0$ for $x<x_{1}$ and $f^{\prime}(x)>0$ for $x>x_{1}$. However, x is an integer, so the maximum is attained at $x=28$ or $x=29$. Since $f(28)=390.4<391.1=f(29)$, we conclude the maximum profit is $f(29)=391.10$ USD, when 29 units are sold.

Chapter Review

1 a $f^{\prime}(x)=0$, the tangent to f at $x=1$ has gradient $m=0$.
b $y^{\prime}(x)=3$, the tangent to y at $x=1$ has gradient $m=3$.
c $g^{\prime}(x)=4 x-4$, the tangent to f at $x=1$ has gradient $m=0$.
d $y^{\prime}(x)=18 x^{2}-6 x+1$, the tangent to f at $x=1$ has gradient $m=13$.
e $f^{\prime}(x)=-\frac{2}{x^{2}}+3$, the tangent to f at $x=1$ has gradient $m=-2+3=1$.
f $f^{\prime}(x)=-\frac{18}{x^{4}}+4 x$, the tangent to f at $x=1$ has gradient $m=-18+4=-14$.
2 First note $f(4)=0.5 \times 4^{2}-3 \times 4+2=-2$, so a point on both the normal and the tangent is $P(4,-2)$. Since $f^{\prime}(t)=t-3$, then $f^{\prime}(4)=1$; the gradient of the tangent at P is 1 and the gradient of the normal at P is -1 . Hence, the normal at P has equation $y+2=-1(x-4) \Rightarrow y=2-x$ and the tangent at P has equation $y+2=x-4 \Rightarrow y=x-6$.

3 Since $f^{\prime}(x)=2 x-5$, to find the x-coordinate of the point A, when the gradient of the tangent to f is 1 , we need to solve $f^{\prime}(x)=2 x-5=1 \Rightarrow x=3$. The corresponding y co-ordinate is $f(3)=-10$, so A has co-ordinates of $(3,-10)$.

4 Let $\left(x_{1}, y_{1}\right)$ be the co-ordinates of B. Note that $f^{\prime}(x)=6 x+4$ so the normal to the curve at B has gradient of $-\frac{1}{6 x_{1}+4}$, and we're given that this has to equal $\frac{1}{2}$, so $6 x_{1}+4=-2 \Rightarrow x_{1}=-1$. Then $y_{1}=f\left(x_{1}\right)=3-4-3=-4$.

5 a $f^{\prime}(t)=-1.667+0.0834 t$
b $f^{\prime}(12)=-0.666$ travelling downhill, $f^{\prime}(32)=1.00$ travelling uphill
c The stationary points are where $f^{\prime}(t)=0 \Rightarrow 0.0834 t=1.667 \Rightarrow t=20.0 \mathrm{~s}$ (this is the time at which Jacek is at the minimum point on the track). This is a minimum point because $f^{\prime}(t)<0$ when $t<20$ and $f^{\prime}(t)>0$ when $t>20$.

6 a The volume of a cylinder of radius r and height h is $V=\pi r^{2} h$. We're given that $V=300$ cm^{3}, so $300=\pi r^{2} h$.
b $h=\frac{300}{\pi r^{2}}$, The surface area of the curved part is $A_{c}=2 \pi r h$ and the surface area of each of the ends is $A_{e}=\pi r^{2}$. Hence, the total surface area is $S=A_{c}+2 A_{e}=2 \pi r h+2 \pi r^{2}$.
c Using the expression from part $\mathbf{a}, S=2 \pi r \times \frac{300}{\pi r^{2}}+2 \pi r^{2}=2 \pi r^{2}+\frac{600}{r}$.
d $\frac{\mathrm{d} S}{\mathrm{~d} r}=4 \pi r-\frac{600}{r^{2}}$
e The only stationary point of S is where $4 \pi r^{3}=600 \Rightarrow r=\sqrt[3]{\frac{150}{\pi}}=3.62 \mathrm{~cm}$. The corresponding surface area is $S=248 \mathrm{~cm}^{3}$ and $h=\frac{300}{\pi r^{2}}=7.26 \mathrm{~cm}$. (all 3 s.f.)

7 a $\frac{\mathrm{d} y}{\mathrm{~d} x}=-0.1 x+1.5$
b Setting $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
$-0.1 x+1.5=0$
$x=15$
$y=-0.05 \times 15^{2}+1.5 \times 15+82=93.25 \mathrm{~m}$
c Evaluating $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=14.5$ and $x=15.5$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=0.05$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=-0.05$
Sign goes from positive to negative, therefore a maximum point
8 a $V=x(40-2 x)(30-2 x)$
$=x\left(1200-60 x-80 x+4 x^{2}\right)=x\left(1200-140 x+4 x^{2}\right)$
$=1200 x-140 x^{2}+4 x^{3}$
b $\frac{\mathrm{d} V}{\mathrm{~d} x}=1200-280 x+12 x^{2}$
c Setting $\frac{\mathrm{d} V}{\mathrm{~d} x}=0$
$1200-280 x+12 x^{2}=0$ A1
$12 x^{2}-280 x+1200=0$
$3 x^{2}-70 x+300=0$
$x^{2}-\frac{70}{3} x+100=0$
d Using GDC to solve $x^{2}-\frac{70}{3} x+100=0$
$x=5.66 \mathrm{~cm}$
A1
$V_{\max }=1200 \times 5.657-140 \times 5.657^{2}+4 \times 5.657^{3}$
M1
$=3032 \mathrm{~cm}^{3}$ (3030 to 3 s.f.)
A1
9 a Use of GDC (demonstrated by one correct value) M1
$a=-0.0534$ A1
$b=1.09$ A1
$c=7.48$ A1
$T=-0.0534 h^{2}+1.09 h+7.48$
b $\frac{\mathrm{d} T}{\mathrm{~d} h}=-0.107 h+1.09$
c Setting $\frac{\mathrm{d} T}{\mathrm{~d} h}=0$ M1
$h=10.2$
d The maximum temperature usually occurs after midday, whereas this is only 10 hours after midnight.
10 (-1.59, -13.2) A1A1
$(0.336,3.81)$ A1A1
$(1.17,1.97)$ A1A1
11 a $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x^{2}-7 x+2 \quad$ M1A1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-3$ M1
$2 x^{2}-7 x+2=-3$
$2 x^{2}-7 x+5=0$
$(2 x-5)(x-1)=0$
M1
$x=\frac{5}{2} \quad y=-\frac{35}{24}$
A1
$x=1 \quad y=\frac{25}{6}$
A1
b $0.314<x<3.19$
12 At $x=1, y=\frac{3}{2}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-2 x^{3}$
At $x=1 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=-2$
gradient of the normal is therefore $\frac{1}{2}$

Equation of the normal is therefore $y-\frac{3}{2}=\frac{1}{2}(x-1)$
$y-\frac{3}{2}=\frac{1}{2} x-\frac{1}{2}$
$y=\frac{1}{2} x+1$
13 Substituting $(2,-1)$ gives M1
$-1=4 a+2 b+3$ A1
$4 a+2 b=-4$
$2 a+b=-2$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 a x+b$
M1
$8=4 a+b$
A1
Solving simultaneously gives M1
$a=5 \mathrm{~A} 1$
$b=-12$
A1
14 a $y=20-x$
$x y=x(20-x)=20 x-x^{2}$
M1
Differentiate and set to zero: M1
$20-2 x=0$ A1
$x=10 \quad$ A1
So $x y_{\text {max }}=100 \quad$ A1
b $x^{2}+y^{2}=x^{2}+(20-x)^{2} \quad$ M1
$=x^{2}+x^{2}-40 x+400$
$=2 x^{2}-40 x+400$
Differentiate and set to zero: M1
$4 x-40=0$ A1
$x=10 \quad$ A1
So $\left(x^{2}+y^{2}\right)_{\text {MAX }}=10^{2}+10^{2}=200 \quad$ A1
c $4 \times 9.5-40=-2 \quad$ A1
$4 \times 10.5-40=+2 \quad$ A1
The derivative goes from negative to positive, therefore this is a maximum R1

