Chapter 12 / Example 6 Finding the gradient of a curve at a point

Consider $y=\frac{x+2}{x-1}, x \neq 1$.
Find the gradient of the curve at the point where $x=2$ and $x=3$.
The gradient of the curve can be found in two ways with the GDC: either it can be found from the graph or as a calculation using the numerical derivative function.
To find the gradient from the graph press $[f 1] y=y$ to display the equation entry screen.
Type $\frac{x+2}{x-1}$ using ALPHA [f1] $1: \mathrm{n} / \mathrm{d}$ to select the fraction template and press enter to enter the equation as Y_{1}.
Press [f5] graph] to display the graph screen.
The GDC displays the graph $Y_{1}=\frac{x+2}{x-1}$ with the default axes.
Press [f5] graph] to display the graph screen.
The GDC displays the graph $Y_{1}=\frac{x+2}{x-1}$ with the default axes.

To find the gradient at $x=2$ press 2nd [calc] 6:dy/dx.
Type 2 , the value of the x-coordinate, and press enter.

The GDC displays a point on $f(x)=\frac{x+2}{x-1}$ and the gradient of the curve at that point.
$f^{\prime}(2)=-3$.
Take care to interpret what the GDC display. -3.000003 is very close to -3 . The small difference is due to the numerical way that the GDC
 calculates the value.

Chapter 12 / Example 6 Finding the gradient of a curve at a point

To find the gradient at $x=3$ press 2nd [calc] 6:dy/dx. Type 3, the value of the x-coordinate, and press enter. The GDC displays a point on $f(x)=\frac{x+2}{x-1}$ and the gradient of the curve at that point.

$f^{\prime}(3)=-0.75$.
Take care to interpret what the GDC display. -0.7500002 is very close to -0.75. The small difference is due to the numerical way that the GDC calculates the value.

To use the numerical derivative function press 2nd [quit] then press alpha [f2] 3:nDeriv

The template has spaces for the variable, x, the function and the value that it is evaluated at.

Enter X in the denominator and the function $\frac{x+2}{x-1}$ using

$$
\frac{d}{d: 71}(\mathrm{~m})_{\square=:}
$$

02
$\psi=5 \cdot 2$

$\mathrm{dy}\langle\mathrm{dx}=-.7500002$
 $d=3$ $X=3$

$$
Y=5 r<
$$

ALPHA [f1] 1:n/d to select the fraction template.
Type 2 and press enter.
$f^{\prime}(2)=-3$.
Take care to interpret what the GDC display. -3.000003 is very close to -3 . The small difference is due to the numerical way that the GDC calculates the value.

Copy the expression by pressing a twice to highlight it and pressing enter.

Delete 2 and type 3.
Press enter.

$\left.\frac{d}{d x}\left(\frac{x+2}{x-1}\right)\right\|_{x=2}$	
	-3.000003

Chapter 12 / Example 6 Finding the gradient of a curve at a point

```
The GDC displays the result:
f}(3)=-0.75
Take care to interpret what the GDC display. -0.7500001875 is very
close to -0.75 . The small difference is due to the numerical way that
the GDC calculates the value.
```

$\left.\frac{d}{d x}\left(\frac{x+2}{x-1}\right)\right\|_{x=2}$
$\left.\frac{d}{d X}\left(\frac{x+2}{x-1}\right)\right\|_{x=3}$
\cdots

