(b) Find f(0).

(c) Find
$$\lim_{x \to -4} \frac{f(x)}{x^2 + 4x}$$
.

(d) Let h be the function defined by
$$h(x) = \frac{g(x)}{x^2 + 1}$$
. Find $h'(1)$.

Do not write beyond this border.

GO ON TO THE NEXT PAGE.

Do not write beyond this border.

NO CALCULATOR ALLOWED

- 4. Consider the differential equation $\frac{dy}{dx} = (y 2)(x^2 + 1)$.
 - (a) Find y = g(x), the particular solution to the given differential equation with initial condition g(0) = 5.

(b) For the particular solution y = g(x) found in part (a), find $\lim_{x \to -\infty} g(x)$.

Do not write beyond this border.

AP Calculus AB Practice Exam

(c) Let y = f(x) be the particular solution to the given differential equation with initial condition f(1) = 3. Find the value of $\frac{d^2y}{dx^2}$ at the point (1, 3). Is the graph of y = f(x) concave up or concave down at the point (1, 3)? Give a reason for your answer.

Do not write beyond this border.

GO ON TO THE NEXT PAGE.

5. The function f is defined by

$$f(x) = \begin{cases} 3x^2 + 2x & \text{for } x \le 0\\ e^{2x} + 2 & \text{for } x > 0. \end{cases}$$

(a) Is f continuous at x = 0? Justify your answer.

(b) Find f'(-2) and f'(3).

(c) Explain why f'(0) does not exist.

(d) Let g be the function given by $g(x) = \int_{-1}^{x} f(t) dt$. Find g(1).

Do not write beyond this border.

Do not write beyond this border.

NO CALCULATOR ALLOWED

- 6. A hive contains 35 hundred bees at time t = 0. During the time interval $0 \le t \le 4$ hours, bees enter the hive at a rate modeled by $E(t) = 16t 3t^2$, where E(t) is measured in hundreds of bees per hour. During the same time interval, bees leave the hive at a rate modeled by L(t) = -2t + 15, where L(t) is measured in hundreds of bees per hour.
 - (a) How many bees leave the hive during the time interval $0 \le t \le 2$?

(b) Write an expression involving one or more integrals for the total number of bees, in hundreds, in the hive at time t for $0 \le t \le 4$. Find the total number of bees in the hive at t = 4.

(c) Find the minimum number of bees in the hive for $0 \le t \le 4$. Justify your answer.

Do not write beyond this border.

GO ON TO THE NEXT PAGE.