Traveling Salesman Problems

The Mars Science Laboratory Curiosity is a sixwheeled rover that
looks like a dune buggy on steroids and cost NASA $2.5 billion
to build and launch. Curiosity, loaded with fancy cameras and

all kinds of scientific insiruments, left Cape Canaveral, Florida, on
November 26, 2011 and landed on the Gale crater region of
Mars on August 6, 2012. Curiosity's mission is to explore an areq
around the Gale crater where planetary scientists believe there is

a good chance of finding chemical and biological markers that
might be evidence of past or present life. To put it simply, Curiosity
is on the hunt for tiny Martians, dead or alive.

i What Is o Traveling Salesman Problem?

The term traveling salesman problem (TSP) is catchy but a bit misleading, since most
of the time the problems that fall under this heading have nothing to do with sales-
people living out of a suitcase. The expression “traveling salesman” has traditionally
been used as a convenient metaphor for many different real-life problems that share
a common mathematical structure,

The three elements common to all TSPs (from now on we simply refer to any
traveling salesman problem as a TSP) are the following:

= Atraveler. The traveler could be a person (or a group), an object (abus, a truck,
an unmanned rover, etc.); it could even be a bee. :

= A sef of sites. These are the places or locations the traveler must visit. We will
use NN to denote the number of sites.

® A set of costs. These are positive numbers associated with the expense of travel-
ing from a site to another site. Here the “cost” variable is not restricted to just
monetary cost—it can also represent distance traveled or time spent on travel.

A solution to a TSPis a “trip” that starts and ends at a site and visits all the other
sites once (but only once). We call such a trip a tour. An optimal solution (optimal
tour) is a tour of minimal tozal cost. (Notice that we used a four rather than the

- tour—in general a TSP has more than one optimal solution.)
Let’s now look at some examples that should help clarify the types of problems

we call TSPs. We will not solve any of these TSPs in this section, but we will discuss
solutions in later sections.

[EXAMPLE 6.1] A REAL TRAVELING SALESMAN'S TSP

Willy “the Traveler” is a traveling salesman who spends a lot
of time on the road calling on customers. He is planning his
next business trip, where he will visit customers in five cities we
will call A, B, C, D, and E for short (N=5). Since A is Willy’s
hometown, he needs to start and end his trip at A.

The graph in Fig. 6-1 shows the cost (in dollars) of a one-
way ticket between any pair of cities (for simplicity we are
assuming the cost of a one-way ticket is the same regardless of
the direction of travel —something that is not always true in the
crazy world of modern airline ticket prices). Like most people,
Willy hates to waste money, so among the many possible ways
he can organize the sales tour Willy wants to find the cheapest
FIGURE é-1 Cost of travel between  (ie., an optimal tour). We will see the solution to Willy’s TSP
cities. in Section 6.3, but if you want to give it a try on your own now

ﬁ please feel free to do so.
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| EXAMPLE 6.3 | THE CURIOSITY TSP

The story of the Mars Science Laboratory nicknamed Curiosity was introduced in
the chapter opener. Curiosity is a six-wheeled $2.5-billion rover loaded with cam-
eras and instruments that roams around a region of Mars known as the Gale crater,
collecting rocks and doing chemical and biological assays of the soil. The primary
mission objective is to look for evidence of the existence of life (past or present) on
Martian soil. The mission is expected to last approximately one Martian year (23
months), and Curiosity is a slow traveler (about 660 feet a day), so efficient planning
of its travels is a critical part of the mission. The specific details of where Curiosity is
to roam were not available at the time of the writing of this example, so the details
that follow are a fictional but realistic version of how the mission might evolve.

Figure 6-3(a) is a graph showing seven locations around the Gale crater (called
‘G, through G7) that Curiosity is going to visit, with G; being the landing site. The
numbers on each edge represent travel distances in meters. [To make some of these
distances meaningful, consider the fact that Curiosity can cover only about 200 m a
day, so the trek from say G, to G5 (8000 m) would take roughly 40 days.] Note that
in the graph the edges are not drawn to scale—as in any graph, the positioning of the
vertices is irrelevant and the only data that are relevant in this case are the numbers
(distances) associated with each edge. In spite of a conscious effort to render the
graph as clear and readable as possible, it’s hard to get around the fact that there
are a lot of numbers in the picture and things get pretty crowded. The distance chart
in Fig. 6-3(b) provides exactly the same information as the graph in Fig. 6-3(a) but
is a little easier to work with. [For TSPs with more than six sites (N > 6), a chart is
generally preferable to a graph. |
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FIGURE 6-3 Distance between locations (in meters) for the Curiosify TSP.

Schoel buses. A school bus (the traveler) picks up children in the morning and
drops them off at the end of the day at designated stops (the sites). On a typical
rural school bus route there may be 20 to 30 such stops. With school buses, total
time on the bus is always the most important variable (students have to get to
school on time), and there is a known time of travel (the cost) between any two
bus stops. Since children must be picked up at every bus stop, a tour of all the
sites (starting and ending at the school) is required. Since the bus repeats its
route every day during the school year, finding an optimal tour is crucial.
Circuit boards. In the process of fabricating integrated-circuit boards, tens of
thousands of tiny holes (the sifes) must be drilled in each board. This is done by
using a stationary laser beam and moving the board (the traveler). To do this ef-
ficiently, the order in which the holes are drilled should be such that the entire
drilling sequence (the tour) is completed in the least amount of time (optimal
cost). This makes for a very high-tech TSP.

m Errands arcund fown. On a typical Saturday morning, an average Joe or Jane
(the traveler) sets out to run a bunch of errands around town, visiting various
sites (grocery store, hair salon, bakery, post office). When gas was cheap, time
used to be the key cost variable, but with the cost of gas these days, people are
more likely to be looking for the tour that minimizes the total distance traveled ~ —
(see Exercise 59 for an illustration of this TSP).




Hamilton Paths and Circuits

In 1857, the Irish mathematician Sir William Rowan Hamilton invented a board
game the purpose of which was to find a trip along the edges of the graph shown in
Fig. 6-5 that visited each of the vertices once and only once, returning at the end to
the starting vertex. (You may want to try your hand at it—the solution is shown on
page 205.) Hamilton tried to market the game to make a little money, but he ended
up just selling the rights to a London dealer for 25 pounds. ‘
The only reason the story of Hamilton’s Icosian game is of any interest to us is
FIGURE 6-5 Hamilion's lcosian that it illustrates an important_ concept in this chap’fe.r—that of traveling along the
game. edges of a connected graph with the purpose of visiting each and every one of the
vertices once (but only once). This leads to the following two definitions:

= Hamilion path. A Hamilton path in a connected graph is a path that visits all
the vertices of the graph once and only once.

= Hamilton circuit. A Hamilton circuit in a connected graph is a circuit that visits
all the vertices of the graph once and only once.

In spite of the similarities in the definitions, Hamilton paths and circuits are very
different from Euler paths and circuits and the two should not be confused. With
Hamilton the name of the game is to visit all the vertices of the graph once; with
Euler the name of the game is to pass through all the edges of the graph once.

_JEXAMPLE 6.5 | GRAPHS WITHOUT HAMILTON CIRCUITS

F Figure 6.6 shows two graphs. The graph in Fig. 6.6(2) has no

Hamilton circuits because once you visit C you are stuck there.

A B A B On the other hand, the graph has several Hamilton paths. One
of them is C, D, E, B, A; another one is C,D, A, B, E. We can

- & reverse those two paths and get two more: A, B, E, D, C and
D c D ¢ E,B,A, D, C. Clearly, the Hamilton path has to start or end at
' C, so the four Hamilton paths listed above are the only ones pos-
G sible. Note that the graph has two odd vertices, so from Euler’s
@ ®) theorem for paths (page 153) we know that it has Euler paths as
well.
FIGURE 6-6

The graph in Fig. 6.6(b) has no Hamilton circuits because once you visit
F (or G) you are stuck there. Nor does the graph have Hamilton paths: The
path has to start at either F or G and end at the other one, and there is no way
to visit the other five vertices without going through some vertices more than
once. Note that this graph also has two odd vertices, so we know that it has an
Euler path.




Complete Graphs

A simple graph (i.e., no loops or multiple edges) in which the vertices are completely
interconnected (every vertex is connected to every other vertex) is called a complete
graph. Complete graphs are denoted by the symbol Ky, where N is the number of
vertices. Figure 6-8 shows the complete graphs for N=3, 4, 5, and 6.

A A A B
Q A B
G B D &
D C E D
K. K,

K3 K4
FIGURE 6-8

5 6

Listed below are four key properties of Ky:

The degree of every vertex in K NisN—1.
The number of edges in Ky is > o"2.
The number of Hamilton paths in KyisNl=1X2 X3X---XN.

ThenumberofHamiltoncircuitsinKNis (N=1)1=1X2 X3X---%x (N=1),

PN~

Property (1) follows from the definition of K n: since every vertex is adjacent to
eachofthe other N — 1 vertices, the degree of eachvertexis N — 1. Property (2) follows
from property (1) and Euler’s sum of degrees theorem (page 153): Since each vertex

has degree N — 1, the sum of all the degrees is N(N — 1) and the number of edges
is N(NZ_ 1). Properties (3) and (4) require a little more detailed explanation, so we

will start by exploring in some detail the Hamilton circuits and paths in K, and K.

N
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| EXAMPLE 6.7 | HAMILTON CIRCUITS AND PATHS IN K,

The six Hamilton circuits in K, are shown in Fig. 6-9. Listed using A as the starting
and ending vertex they are: (a) A, B, C, D, A; (b) A, D, B, C,A; (c) A, B, D, C, A;
and their respective reversals (d) A, D, C, B, A; (e) A, C, B, D, A; (f) A, C, D, B, A.

| | EXAMPLE 6.8

(1)A,B,C,D,E, A

(13)A,E,D,C,B, A

(2)A,B,C,E,D, A

(14) A,D,E,C, B, A

(3)A,B,D,C,E, A

(15)A,E,C,D, B, A

4)A,B,D,E,C, A

(16)A,C,E,D,B, A

(5)A,B,E,C,D, A

(17)A,D,C,E, B, A

(6)A,B,E,D,C, A

(18)A,C,D,E, B, A

(7)A,C,B,D,E, A

(19)A,E,D,B,C, A

(8)A,C,B,E, D, A

(20)A,D,E,B,C, A

(9)A,C,D,B,E, A

(21)A,E,B,D,C, A

(10) A, C,E, B, D, A

(22)A,D,B,E,C, A

(11)A,D,B,C,E, A

(23)A,E,C,B,D, A

(12)A,D,C,B,E, A

(24)A,E,B,C,D, A

The 24 Hamilton circuits in K

FIGURE 6-9 The six Hamilion circuits in Kj.

HAMILTON CIRCUITS AND PATHS IN K;

The 4! =1 X2 X 3 X 4 =24 Hamilton circuits in K5 are shown
in Table 6-1, written using 4 as the starting and ending vertex.
Circuits (13) through (24) are the reversals of circuits (1) through
(12), respectively. Any Hamilton circuit that starts and ends with
A will have the other four “inside” vertices (B,C,D,and E) listed
in between in some order. There are 4 X3 X2 X 1 =24 ways to
list the letters B, C, D, and E in order: 4 choices for the first let-
ter, 3 choices for the second letter, 2 choices for the third letter,
and a single choice for the last letter. This explains why Table 6-1
is a complete list of all the possible Hamilton circuits in K.

There are 24 X 5 =120 Hamilton paths in Ks. For obvious
reasons, we are not going to list them, but by now we should know
how to generate them: Take any of the 24 Hamilton circuits and
break it up by deleting one of its five edges. Figure 6-10 shows
three of the 120 possible Hamilton paths: Fig. 6-10(a) is obtained
by deleting edge DA from circuit (2) on Table 6-1, and Fig. 6-10(b)
is obtained by deleting edge BC from circuit (11). We leave it as an
exercise for the reader to figure out how the Hamilton path in Fig,
6-10(c) comes about.

©
FIGURE 6-10  Three of the 120 possible Hamilion paths in Ks.

Another way to count the number of Hamilton paths in K is to think in terms
of permutations. (We first introduced permutations and their connection to factori-
als in Section 2.4. For a quick review of these concepts the reader is encouraged to
revisit that section.) Each Hamilton path in K is a permutation of the letters A, B,
C, D, and E. It follows that the number of Hamilton paths equals the number of

B permutations of the five letters. This number is 5! = 120.

When we generalize the preceding observations to a complete graph with N
vertices we get the following improved version of properties (3) and (4):

3. A Hamilton path in Ky is equivalent to a permutation of the N vertices, and,
therefore, the number of Hamilton paths is N!

4. A Hamilton circuit in Ky is equivalent to a permutation of the N — 1

“inside” vertices (i.e., all vertices except the starting/ending vertex), and, there-
fore, the number of Hamilton circuits is (N —1)!




The Brute-Force Algorithm

FIGURE 6-11

We start this section with the TSP introduced in Example 6.1.

XAMPLE 6.9 | THE REAL TRAVELING SALESMAN'S TSP SOLVED

In Example 6.1 we left Willy the traveling salesman hanging. What Willy would like
from us, most of all, is to help him find the optimal (in this case cheapest) tour of the
five cities in his sales territory. The cost of travel between any two cities is shown in
Fig. 6.11 (this is exactly the same figure as Fig. 6-1). Notice that the underlying graph
in Fig. 6-11 is just a fancy version of K (five vertices each adjacent to the other four)
with numbers associated with each of the 10 edges. In this TSP the numbers repre-
sent the cost of travel (in either direction) along that edge.

Table 6-4 lists the 24 possible tours that Willy could potentially take. The first
and third columns of Table 6-4 gives the 24 different Hamilton circuits in K. This
part is an exact copy of Table 6-1. Notice once again that the list is organized so
that each tour in the third column is the reversed version of the corresponding
tour in the first column. Listing the tours this way saves a lot of work because the
cost of a tour is the same regardless of the direction of travel: Once we know the
cost of a tour we know the cost of its reversal. (Please note that this is true only
because we made the assumption that the cost of travel between two cities is the
same regardless of the direction of travel. When the costs vary with the direction
of travel then the shortcut won’t work.) The middle column shows the total cost
of each tour and the calculation that leads to it (for each tour just add the costs of
the edges that make the tour).

Tour Total cost Tour

(1)A,B,C,D,E, A

185+ 121+ 174 +199 + 133 =812

(13)A,E,D,C,B, A

(2)A,B,C,E,D, A

185 +121+120 + 199 + 152 =777

(14) A, D,E,C,B, A

(3)A,B,D,C,E, A

185 + 150 +174 4+ 120+ 133 =762

(15)A,E,C,D, B, A

4 ABDECA

185+ 150 +199 + 120 + 119 =773

(16)A,C,E,D,B, A

(5)A,B,E,C,D, A

185-+200 + 120 + 174 + 152 =831

(17)A, D, C,E, B, A

(6)A,B,E,D,C, A

185 +200+ 199 + 174 + 119 = 877

(18)A,C,D,E,B, A

()A,C,B,D,E, A

119+ 121+ 150 + 199 + 133 = 722

(19)A,E,D,B,C, A

(8)A,C,B,E,D, A

119 + 121 + 200 + 1994 152 = 791

(20)A,D,E,B,C, A

(9)A,C,D,B,E, A

119 +174 + 150 + 20,: + 133 =776

(21)A,E,B,D,C, A

(10)A, C,E,B,D, A

119 + 120 + 200 + 150 + 152 = 741

(22)A,D,B,E,C, A

(11)A,D,B,C,E,A

152+150+ 121+ 120+ 133 = 676

(23)A,E,C,B,D,A

(12)A,D,C,B,E, A

152 + 174 + 121 4200 + 133 = 780

(24)A,E,B,C,D, A

LE 6-4  The 24 possible tours in Example -9 and their costs, with the optimal tour(s), highlighted




Before moving on to other TSP examples, let’s connect a few dots. Our general
assumption for a TSP is that there is a way to get from any location to any other loca-
tion. If we think of the locations as the vertices of a graph, this means that every TSP
has an underlying graph that is a complete graph K. In addition to the underlying
graph, there are costs associated with each edge. A graph that has numbers associ-
ated with its edges is called a weighted graph, and the numbers are called weights.
A tour in a TSP translates to a Hamilton circuit in the underlying graph, and an
optimal tour translates into a Hamilton circuit of least total weight.

In short, the TSP is the concrete, real-life problem and its reformulation in terms
of Hamilton circuits in a complete weighted graph is the mathematical model that
represents the problem. In this model, locations are vertices, costs are weights, tours
are Hamilton circuits, and optimal lours are Hamilton circuits of least total weight.

We can describe now the approach we used in Example 6.9 to solve Willy’s
TSP in a somewhat more formal language: We made a list of all possible Hamilton
circuits (first and third columns of Table 6-4), calculated the total weight of each
(middle column of Table 6-4), and picked the circuits with least total weight.
This strategy is formally known as the brute-force algorithm.

-=THE BRUTE-FORCE ALGORITHM

= Step 1. Make a list of all the Hamilton circuits of the underlying graph Kj.
= Step 2. Calculate the total weight of each Hamilton circuit,
= Step 3. Choose a Hamilton circuit with least total weight.

EXAMPLE 6.10 | THE INTERPLANETARY MISSION TSP SOLVED

We are revisiting the TSP introduced in Example 6-2. In this TSP the goal is to find
the fastest tour for an interplanetary mission to five of the outer moons in our solar

that this list has 5! = 120 different Hamilton circuits, That’s more work than we
care to do, so a full list is out of the question. Imagine now that we get a hint: The
first stop in an optimal tour is Callisto. How much help is that? A lot. It means that
the optimal tour must be a Hamilton circuit of the form E, C, *, *, *, *, E. The ¥

7
(Io M
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(Mimas)

¢ 15
(Titan) (Callisto) *-

(Ganymede) (Earth) (Ganymede) (Earth)
(a) (b)

IGURE 6-13  (a) Graph model for the interplanetary mission TSP. (b) An optimal tour.
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The Nearest-Neighbor and Repetitive
Nearest-Neighbor Algorithms

In this section we introduce a new method for solving TSPs called the nearest-
neighbor algorithm (NNA). We will illustrate the basic idea of the nearest-neighbor
algorithm using the interplanetary mission TSP once again. We found an optimal
tour for this TSP in Example 6.10, so the point now is to see how the NNA does it.

|EXAMPLE 6.11 | THE INTERPLANETARY MISSION TSP
AND THE NEAREST-NEIGHBOR ALGORITHM

Look at the graph in Fig. 6-13(a) once again and imagine planning the mission.
Starting from Earth we could choose any of the moons for our first stop. Of all the
choices, Callisto makes the most sense because in terms of travel time it is Earth’s
“nearest neighbor”: Among the edges connecting E to the other vertices, EC is the
one with the smallest weight. (Technically speaking we should call C the “smallest
weight” neighbor, but that sounds a bit strange, so we use nearesr neighbor as a ge-
neric term for the vertex connected by the edge of least weight.)

So we made it to Callisto. Where to next? Following the same logic, we choose
to go to Callisto’s nearest neighbor Io. From Io we go to Ganymede (the near-
est neighbor we have not yet been to), from Ganymede to Mimas, from Mimas
to Titan (the last moon left), and finally from Titan the mission comes back to
Earth. This tour, called the nearest-neighbor tour, is shown in Fig. 6-14. The total
length of this tour is 19.4 years, and that’s a bit of bad news. In Example 6.10 we
found an optimal tour with total length 18.3 years— this tour is more than a year
longer.

(Ganymede)

ﬁ ) (Earth) ;
FIGURE 6-14  Nearestneighbor tour for the inferplanetary mission TSP,

Example 6.11 illustrates a common situation when trying to find solutions
to TSPs. We can come up with very simple and fast methods for finding “good”
tours, but these methods cut corners and don’t necessarily produce the “best”
(optimal) tour.

F or.mally, we will use the term approximate algorithm to describe any algorithm
for solving TSPs that produces a tour, but not necessarily an optimal tour. The nearest-
n.eighbor algorithm is an example of an approximate algorithm. We will discuss a
different approximate algorithm called the cheapest-link algorithm in Section 6.5,

and in Chapter 8 we will see approximate algorithms for solving a different type of
problem (not a TSP).

a \é
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| EXAMPLE 6.12 | THE CONCERT TOUR TSP AND THE NNA

In Example 6.4 we were introduced to the indie rock band Luna Park, just about to
embark on a 10-city concert tour. Figure 6-15(a) shows the distances (in miles) be-
tween any two cities. Because the band members all live at A, the tour needs to start
and end at A. The goal is to find the optimal (shortest distance) tour.

This is a TSP with N = 10locations. Notice that we don’t see a complete weighted
graph, but the mileage chart provides exactly the same information as the graph
would (and it does it in a much cleaner way). The only way we know for finding an
optimal tour is the brute-force algorithm, and to use brute force would mean making
a list of 9! = 362,880 possible Hamilton circuits. Obviously, we are not about to do
that, at least not without help. But, we now know of a quick-and-dirty shortcut—
the nearest-neighbor algorithm. Let’s try it and see what we get.

To implement the nearest-neighbor algorithm from a chart we use the follow-
ing strategy: Start with the row labeled A, and look for the smallest number in that
row. That number (119) identifies A’s nearest neighbor, in this case C. We now go
to row C and look for C’s nearest neighbor. [Before we do that, it helps to cross out

AlBlcIDlEJFlGIHI[TIK DIBIODIEB Flc HIT|K
A | » 1185]119]152[133]321{297|277 {412 381 A | ¥ 11851119|152 11253321297 277] 412381
B {185{ * 1121]150]2001404 4581492379427 B {185] = {121{130]200]404]458] 492|379 427
C |1191121] + |174]120]332{439]348] 2451443 C {T19l121] S | 154 {19p1332[ 439|348 | 245 | 443
D {152]150|174| * [199]495]480} 500454489 D [152[150{ 14| & [109]495]480 500454489
E {13312001120{199] * |315]463]204 396487 E {183]200[120]189] & 1315[463]204 396|487
F [321140413321495]315] * |356{211{369]{222 F |3211404{3321495 |35 | = 1356|211 |369[222
G [297145814391480463|356] = {4711241}235 G [297 1458439430408 1356 = |471|241|235
H |2771492348500]204]211]471} = {2831478 H 17371492 13481500 %04 21114711 = {283]478
J {4121379124514541396{369 241|283} = {304 J 1 4213791245] 454306 | 369241 | 2831 * [304
K |381]427{443489]487|222]23514781304] = K |381]427 14431489487 (222|235 478]304| =

(a) (b)

FIGURE 6-15 (o) Mileage chart for the concert four TSP. (b} The chart after the first four steps of the NINA

A, C ED, ..l

the column for C (this helps make sure we don’t go back to C in the middle of the
tour). For similar reasons we also crossed out the A-column.] The smallest number
available in row C is 120, and it identifies C’s nearest-neighbor E. We now cross out
the E-column and go to row E, looking for a nearest-neighbor. The smallest number
available in row E is 199, and it identifies E’s nearest-neighbor D. We cross out the
D-column and continue [Fig. 6-15(b) shows the mileage chart at this point]: From D
to its nearest-available neighbor B (150), from B to J (379), from J to G (241), from
G to K (235), from K to F (222), from F to the only city left H (211), and finally end
the tour by returning to A (277). This is the nearest-neighbor tour: A, C, E, D, B, J,
G, K, F, H, A, and it has a total length of 2153 miles.
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The Repetitive Nearest-Neighbor Algorithm

One of the interesting features of the nearest-neighbor algorithm is that the tour
it produces depends on the choice of starting vertex. For the same TSP, a change
in the choice of starting vertex can produce a different nearest-neighbor tour.
(Note that this does not imply that the tours are always different—we might change

the starting vertex and still get the same tour.) This observation can help us squeeze
better tours from the nearest-neighbor algorithm: Each time we try a different start-
ing vertex there is the chance we might get an improved tour; the more vertices we
try, the better our chances. This is the key idea behind a refinement of the nearest-

neighbor algorithm known as the repetitive nearest-neighbor algorithm. Our next
example illustrates how this strategy works.

EXAMPLE 6.13 | THE CONCERT TOUR TSP REVISITED

Nearest-Neighbor tour Total length
(1)A,C,E,D,B,J,G,K,F,H,A 2153
)B,C,A,E,D,I,G,K,F,H,B 2427
(3)C,A,E,D,B,1,G,K,F,H,C 2237
(4)D,B,C,A,E H,F,K,G,I,D 2090
(5)E,C,A,D,B,J,G,K,F,H,E 2033
(6)F,H,E,C,A,D,B,J,G,K,F 2033
(7)G,K,F,H,E,C,A,D,B,J],G 2033
(8)H,E,C,A,D,B,J,G,K,F,H 2033
9)J,G,K,F,H,E,C,A,D,B,J] 2033

(10)K,F,H,E,C,A,D,B,J,G, K 2033

B TABLE 6-5 Nearestneighbor tours for every possible

starting vertex

In Example 6.12 we used the nearest-neighbor algorithm
to find a concert tour for the Luna Park rock band (this
is the TSP introduced in Example 6.4). We used A as the
starting and ending vertex because the band lives at A, soin
some sense we had no choice. The tour we found had a total
length of 2153 miles.

We are going to try the same thing again but now will
use B as the starting and ending vertex. (Let’s disregard for
now the fact that the tour really needs to start and end at
A. We'll deal with that issue later.) From B we go to its
nearest-neighbor C, from C to its nearest-neighbor A, from
A to E, and so on. The work is a little tedious, but we can
finish the tour in a matter of minutes. We leave the details
to the enterprising reader, but the bottom line is that we
end up with the tour B, C, A, E, D, J, G, K, F, H, B with a
total length of 2427 miles.

We will now repeat this process, using each of the other
vertices as the starting/ending vertex and finding the corre-
sponding nearest-neighbor tour. Figuring a couple of min-
utes per vertex, the process might take about 20 minutes.
Table 6-5 summarizes the results. The first column shows

the 10 nearest-neighbor tours obtained by running over all possible starting/ending
vertices; the second column shows the total length of each tour. We are looking for
the best among these. Tours (5) through (10) are all tied for best, each with a total
length of 2033 miles. We can take any one of these tours, and get a nice improve-
ment over the original tour we found in Example 6.12.



—aTHE NEAREST-NEIGHBOR ALGORITHM

Start: Start at the designated starting vertex. If there is no designated
starting vertex pick any vertex.

m First step: From the starting vertex go to its nearest neighbor (i.e., the vertex
for which the corresponding edge has the smallest weight).

= Middle steps: From each vertex go to its nearest neighbor, choosing only
among the vertices that haven’t been yet visited. (If there is more than one

nearest neighbor choose among them at random.) Keep doing this until all
the vertices have been visited.

m Last step: From the last vertex return to the starting vertex. The tour that
we get is called the nearest-neighbor tour.

—aTHE REPETITIVE NEAREST-NEIGHBOR ALGORITHM

» Let X be any vertex. Find the nearest-neighbor tour with X as the starting
vertex, and calculate the cost of this tour.

m Repeat the process with each of the other vertices of the graph as the
starting vertex.

m Of the nearest-neighbor tours thus obtained, choose one with least cost. If
necessary, rewrite the tour so that it starts at the designated starting vertex.
The tour that we get is called the repetitive nearest-neighbor tour.

=

=

)

-
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FIGURE 6-16  (a) The interplanetary mission TSP. [b} Partially constructed cheapestink tour. (c)

after completion.

lEXAMPl.E 6.14 | THE INTERPLANETARY MISSION TSP AND THE CLA

The grapl_l in lf‘ig. 6—16.(a) is a repeat of Fig. 6-2. The weights of the edges represent
the cost (in this case time) of travel between any two locations. We will now show
how the cheapest-link algorithm handles this TSP.

§%eg:s l. We start by scanning the graph in Fig. 6-16(a) looking for the cheapest
link (edge). Here the cheapest link is the one connecting Mimas and Titan (0.6
years). [For convenience we’ll denote it by MT (0.6).] We select that link and
indicate that we are doing so by highlighting it in red.

§?eg§ 2. We go back to scanning the graph looking for the next cheapest link. We
find CI (0.8) and proceed to highlight it in red. (Notice that the two red links are

not connected, but it doesn’t matter at this point.)

(b) (©)
Cheapestlink tour

m Siep 3. Once again, we scan the graph looking for the next cheapest link and

find /G (1.1). We highlight it in red.

Step 4. The next cheapest link in the graph is CG (1.5). We pick up our red
pen and are about to highlight the link when we suddenly realize that this is
not a good move. A red CG means that we would be forming a red circuit
C, I, G, C. But tours (Hamilton circuits) can’t contain partial circuits, so any
edge that forms a partial circuit must be ruled out. (For convenience, we call this
the partial-circuit rule.) So, even though CG is the next available cheapest link,
we can’t choose it because of the partial-circuit rule. We indicate this fact by X-
ing out CG (the X is like a little marker saying “do not travel along this link”).
So, we try again. After CG, the next cheapest link is CE (3.1). No problem here,
so we select it and highlight it in red.

Step 5. The next cheapest link in the graph is EG (3.2). If we were to highlight
GE in red we would be forming the partial red circuit E, G, I, C, E. Because of
the partial-circuit rule, we must X-out EG. We scan the graph again and find
that the next cheapest link is /E. If we were to highlight /E in red we would have
the following problem: three red edges (/E, IG, and IC) meeting at one vertex.
This is not possible in a tour, since it would require visiting that vertex more
than once. (For convenience, we call this the three-edge rule.) So we X-out IE
as well. [If you are doodling along with this narration, your picture at this point
should look something like Fig. 6-16(b).] The next four cheapest links in order
are IM (4.7), IT (5.1), CM (5.2), and CT (5.6). They all have to be ruled out be-
cause of the three-edge rule. This leads us to GM (5.7). This edge works, so we
select it and highlight it in red.

Step 6. Since N = 6 this should be the last step. The last step is a little easier
than the others—there should be only one way to close the circuit. Looking at
the graph we see that E and T are the two loose ends that need to be connected.
We do that by adding the link ET. Now we are done.

2
o7 1



—aTHE CHEAPEST-LINK ALGORITHM

m Step 1. Pick the cheapest link available. (If there is more than one, ran-
domly pick one among the cheapest links.) Highlight the link in red (or any
other color).

s Step 2. Pick the next cheapest link available and highlight it.

s Steps 3, 4, . . ., N— 1. Continue picking and highlighting the cheapest
available link that (a) does not violate the partial-circuit rule (i.e., does not
close a partial circuit) or (b) does not violate the three-edge rule (i.e., does

‘not create three edges meeting at the same vertex).
m Step N. Connect the two vertices that close the red circuit. Once we have

the Hamilton circuit, we can add a direction of travel (clockwise or counter-
- clockwise). Either one gives us a cheapest-link tour.

Our next example illustrates how to implement the cheapest-link algorithm
when we have to work from a chart rather than a graph. The main difficulty in this
situation is that it is not easy to spot violations of the partial-circuit and three-edge
rules when looking at a chart. A simple way around this difficulty is to create an
auxiliary picture of the tour as it is being built, one edge at a time.

XAMPLE 6.15 | THE CURIOSITY TSP AND THE CLA

We are finally going to take a look at the Curiosity TSP introduced in the chapter
opener and described in Example 6.3. The seven locations (G through G,) that the
Mars rover Curiosity must visit and the distances (in meters) between pairs of loca-
tions are given in Fig. 6-17(a). We will use the cheapest-link algorithm working di-
rectly out of the distance chart. All we will need is an additional auxiliary graph that
will help us visualize the links as we move through the steps of the algorithm. Figure

6-17(b) shows the auxiliary graph when we start—a blank slate of seven vertices G,
through G5 and no edges.

G| G | G | Gy | Gs | Gg | Gy
Gy | = 17500}5000 }2800 {3500 |1500 {2200
G, {7500] * {3000}6000 {8000 {6500 {5000
G, |5000|3000] * 4000|4800 |3500 |2800] | ©1° ° Gy
G4 {2800|6000}4000} = {2000 {3000 |2900
Gs 13500{8000{48002000] * {4000 3200

GzO o G3

o .
G 1150065003500 {3000}4000] * |1300 G, o & Gs
Gy 122005000 {2800 |2900 3200|1300 | * .
(b}
@

| S
=~
;
~

.
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EXAMPLE 6.16 | THE CURIOSITY TSP AND THE NNA

We know only one way to find the optimal tour for the Curiosity TSP—use the
brute-force algorithm, but this would require us to create a list with 6! = 720 Ham-
ilton circuits. That’s a lot of circuits to check out by hand.

G| G |G| G |G [Gs | Gy
G| + |7500|5000{2800{3500]1500 2200
Gz {7500] * {3000]6000]8000]6500 5000
Gs |5000{3000] * [4000{4800]3500]2800
Gy {2800}6000{4000] = |2000]3000 12900
Gs |3500{8000{4800|2000] * 4000|3200
Gs 11500{6500{3500{3000{4000] * 1300
G7 12200{5000{2800]2900{3200{1300| =

(@
B FIGURE 6-18 (o) Dislance chart for the Curiosity TSP;




S| EXERCISES
WLKING

| What Is a Traveling Salesman Problem?

No exercises for this section.

{ Hamilton Paths and Circuits
1.. For the graph shown in Fig. 6-19,

{a) find three different Hamilton circuits.

(b) find a Hamilton path that starts at A and ends at B.

{c) find a Hamilton path that starts at D and ends at F.

2. For the graph shown in Fig. 6-20,
{a) find three different Hamilton circuits.
(b} find a Hamilton path that starts at A and ends at B.
(e} find a Hamilton path that starts at F and ends at I.

. Find all possible Hamilton circuits in the graph in Fig. 6-21.

Write your answers using A as the starting/ending vertex.

FIGURE 6-21

. Find all possible Hamilton circuits in the graph in Fig. 6-22.

Write your answers using A as the starting/ending vertex.

A



S.

For the graph shown in Fig. 6-23,
la) find a Hamilton path that starts at A and ends at E.

(b) find a Hamilton circuit that staris at A and ends with
the edge EA.

() find a Hamilton path that starts at A and ends at C.
(d) find a Hamilton path that starts at F and ends at G.

F
A B
D c

G
FIGURE 6-23

For the graph shown in Fig. 6-24,
{a) find a Hamilton path that starts at A and ends at E.

(b} find a Hamilton circuit that starts at A and ends with
the edge EA.

{e) find a Hamilton path that starts at A and ends at G.
(d) find a Hamilton path that starts at F and ends at G.

A
F
D C
G
FIGURE 6-24

Suppose D, G, E, A, H, C, B, F, D is a Hamilton circuit ina
graph.
(o) Find the number of vertices in the graph.

{b) Write the Hamilton circuit using A as the starting/
ending vertex.

{c} Find two different Hamilton paths in the graph that
start at A.

Suppose G,B,D,C, A, F, E, Gis a Hamilton circuit in a
graph.

{a) Find the number of vertices in the’ graph.

(b) Write the Hamilton circuit using F as the starting/
ending vertex.

(¢} Find two different Hamilton paths in the graph that
start at F.

Consider the graph in Fig. 6-25.

{a} Find the five Hamilton paths that can be obtained by
“breaking” the Hamilton circuit B,A,D, E,C,B (ie., by
deleting just one edge from the circuit).

(b} Find the eight Hamilton paths that do not come from
“broken” Hamilton circuits (i.e., cannot be closed into
a Hamilton circuit). (Hint: See Example 6.6).

A B
D c
FIGURE 6-25

10. Consider the graph in Fig. 6-26.

(o) Find all the Hamilton circuits in the graph, using B as
the starting/ending vertex. (Hint. There are five Ham-

ilton circuits and another five that are reversals of the
first five.)

{b) Find the four Hamilton paths that start at B and do not
come from “broken” Hamilton circuits (i.e., cannot be
closed into a Hamilton circuit).

FIGURE 6-26
11. Consider the graph in Fig. 6-27.

{a) Find all the Hamilton circuits in the graph, using A as the
starting/ending vertex. You don’t have to list both a cir-
cuit and its reversal—you can just list one from each pair.

{b) Find all the Hamilton paths that do not come from
“broken” Hamilton circuits (i.e., cannot be closed into
a Hamilton circuit). You don’t have to list both a path
and its reversal—you can just list one from each pair.

A F E

B C D
FIGURE 6-27

12. Consider the graph in Fig. 6-28.

(@) Find all the Hamilton circuits in the graph, using A as
the starting/ending vertex. You don’t have to list both a
circuit and its reversal —you can just list one from each
pair.

(b} Find all the Hamilton paths that do not come from
“broken” Hamilton circuits (i.e., cannot be closed into
a Hamilton circuit). You don’t have to list both a path
and its reversal—you can just list one from each pair.
(Hint: Such paths must either start or end at C. You can
just list all the paths that start at C— the ones that end
at C are their reversals.)

A B

E D
FIGURE 6-28



13. For the graph shown in Fig. 6-29,
la) find a Hamilton path that starts at A and ends at F.
(b) find 2 Hamilton path that starts at K and ends atE.

{c) explain why the graph has no Hamilton path that
starts at C.

(d) explain why the graph has no Hamilton circuits,

A B F

J G
D C I H
FIGURE 6-29

14. For the graph shown in Fig. 6-30,
(o) find a Hamilton path that starts at B.
(b) find a Hamilton path that starts at E.

{c) explain why the graph has no Hamilton path that starts
at Aorat C.

{d) explain why the graph has no Hamilton circuit.

FIGURE 6-30

15. Explain why the graph shown in Fig. 6-31 has neither
Hamilton circuits nor Hamilton paths.

F

A B

D &
G

FIGURE 6-31

16. Explain why the graph shown in Fig. 6-32 has no Hamilton
circuit but does have a Hamilton path.

17. For the weighted graph shown in Fig. 6-33,
{a) find the weight of edge BD.

(b) find a Hamilton circuit that starts with edge BD, and
give its weight.

(c} find a Hamilton circuit that ends with edge DB, and
give its weight.

18. For the weighted graph shown in Fig. 6-34,
(o) find the weight of edge AD.

(b} find a Hamilton circuit that starts with edge AD, and
give its weight.

{cJ find a Hamilton circuit that ends with edge DA, and
give its weight.

D

FIGURE 6-34

19. For the weighted graph shown in Fig. 6-35,

(o) find a Hamilton path that starts at A and ends at C,and
give its weight.

{b) find a second Hamilton path that starts at A and ends
at C, and give its weight.

(¢} find the optimal (least weight) Hamilton path that starts
at A and ends at C, and give its weight.




20. For the weighted graph shown in Fig. 6-36,

21.

22,

23.

24,

25.

26.

{a) find a Hamilton path that starts at B and ends at D, and

give its weight.

(b) find a second Hamilton path that starts at B and ends

at D, and give its weight.

{¢) find the optimal (least weight) Hamilton path that starts

at B and ends at D, and give its weight.

FIGURE 6-34

Suppose you have a supercomputer that can generate one
billion Hamilton circuits per second.

{a) Estimate (in years) how long it would take the

supercomputer to generate all the Hamilton circuits
in Ky.

(b) Estimate (in years) how long it would take the
supercomputer to generate all the Hamilton circuits

in K22.

Suppose you have a supercomputer that can generate one
irillion Hamilton circuits per second.

{a)

Estimate (in years) how long it would take the
supercomputer to generate all the Hamilton circuits
in K.

(b} Estimate (in years) how long it would take the

supercomputer to generate all the Hamilton circuits
in K27.

{a)
{b)
{c)

How many edges are there in K,?
How many edges are there in K»;?

If the number of edges in Ky, is x and the number of
edges in Ks; is y, what is the value of y — x?

o)
(b)
(e}

How many edges are there in Kjy?
How many edges are there in Ky;?

If the number of edges in Ky is x and the number of
edges in Ky is y, what is the value of y — x?

In each case, find the value of N.

la} Ky has 120 distinct Hamilton circuits.
{b) Ky has 45 edges.

{c) Ky has 20,100 edges.

In each case, find the value of N.

{a) Ky has 720 distinct Hamilton circuits.
(b) Ky has 66 edges.

{} Ky has 80,200 edges.

27.

28.

29.

30.

The Brute-Force Algorithm

Find an optimal tour for the TSP given in Fig. 6-37, and give
its cost.

FIGURE 6-37

Find an optimal tour for the TSP given in Fig. 6-38, and
give its cost.

A
80,/ 40 N30
607D ™20
C
25 B

FIGURE 6-38

A truck must deliver furniture to stores located in five dif-
ferent cities A, B, C, D, and E. The truck must start and end
its route at A. The time (in hours) for travel between the
cities is given in Fig. 6-39. Find an optimal tour for this TSP
and give its cost in hours. (Hint: The edge AD is part of an
optimal tour.)

FIGURE 6-39

A social worker starts from her home A, must visit clients at
B, C, D, and E (in any order), and return home to A at the
end of the day. The graph in Fig. 6-40 shows the distance (in
miles) between the five locations. Find an optimal tour for
this TSP, and give its cost in miles. (Hint: The edge AC is
part of an optimal tour.)

N

§

e
e



31. You are planning to visit four cities A, B, C, and D. Table
6-6 shows the time (in hours) that it takes to travel by car i
between any two cities. Find an optimal tour for this TSP A ' x‘
that starts and ends at B.

BiC|D
Al *xi1216 |14
B 112§ = | 17115
Ci6117)=*}11
D 1415111 { =

32, An unmanned rover must be routed to visit four sites la-
beled A4, B, C, and D on the surface of the moon. Table 36
6-7 shows the distance (in kilometers) between any two
sites. Assuming the rover landed at C, find an optimal

- A delivery service must deliver packages at Buckman (B),
Chatfield (C), Dayton (D), and Evansville (E) and then re-
turn to Arlington (A), the home base. Figure 6-42 shows a

tour. graph of the estimated travel times (in minutes) between
the cities.
AlBlCclD {a} Find the nearest-neighbor tour with starting vertex A.
Ajo|4}18)16 Give the total travel time of this tour.
lé 1‘; 107 2 173 {b) Find the nearest-neighbor tour with starting vertex D.
TR ET e (7) Write the tour as it would be traveled if starting and
0 ending at A. Give the total travel time of this tour.
B TABLE 6-7

33. Consider a TSP with nine vertices labeled A through I.

la) How many tours are of the form A4, G, . .., A? (Hinr:
The remaining seven letters can be rearranged in any
sequence.)

{b} How many tours are of the form B, . . . , E, B?

) How many tours are of the form A4, D, . . ., F, A? FIGURE ¢-42 .
34. Consider a TSP with 11 vertices labeled A through K. 37. The Brute-Force Bandits is a rock band planning a five-city
{a) How many tours are of the form A, B, ..., A? (Hint: concert tour. The cities and the distances (in miles) between
The remaining nine letters can be rearranged in any them are given in the weighted graph shown in Fig. 6-43.
sequence.) The tour must start and end at A. The cost of the chartered

bus in which the band is traveling is $8 per mile.
“{b} How many tours are of the form C, .. ., K, C?

{a) Find the nearest-neighbor tour with starting vertex A.

{} How many tours are of the form D, B, . .., K, D? Give the cost (in $) of this tour.

(b} Find the nearest-neighbor tour with starting vertex B.
The Nearest-Neighbor and Repetitive Write the tour as it would be traveled by the band, start-
Neclresl'-Neighbor Algorithms ing and ending at A. Give the cost (in $) of this tour.

35. For the weighted graph shown in Fig. 6-41, (i) find the in-
dicated tour, and (ii) give its cost. (Note: This is the TSP
introduced in Example 6.1.)

{a) The nearest-neighbor tour with starting vertex B

{b} The nearest-neighbor tour with starting vertex C

{c} The nearest-neighbor tour with starting vertex D

FIGURE 6-43

{d) The nearest-neighbor tour with starting vertex E




38. A space mission is scheduled to visit the moons Callisto (C),

Ganymede (G), Io (), Mimas (M), and Titan (T) to col-
lect rock samples at each and then return to Earth (E).
The travel times (in years) are given in the weighted graph
shown in Fig. 6-44. (Note: This is the interplanetary TSP dis-
cussed in Example 6.11.)

{a} Find the nearest-neighbor tour with starting vertex E.
Give the total travel time of this tour.

(b) Find the nearest-neighbor tour with starting vertex T.
Write the tour as it would be traveled by an expedition
starting and ending at E. Give the total travel time of

this four.

FIGURE 6-44

This exercise refers to the furniture truck TSP introduced in
Exercise 29 (see Fig. 6-39).

la) Find the nearest-neighbor tour starting at A.

(b} Find the nearest-neighbor tour starting at B, and give
the answer using A as the starting/ending city.

. This exercise refers to the social worker TSP introduced in
Exercise 30 (see Fig. 6-40).
{a}) Find the nearest-neighbor tour starting at A.

(b} Find the nearest-neighbor tour starting at C, and give
the answer using A as the starting/ending city.

. Darren is a sales rep whose territory consists of the six cit-
ies in the mileage chart shown in Fig. 6-45. Darren wants to
visit customers at each of the cities, starting and ending his

Mileage Chart

7]

518 %

g € a 3
ElE|2|5|¢8)¢g
2|32 |8|&|2
Atlanta * 533 | 798 | 1068 | 1361 | 772
Columbus 533 | = | 656 | 713 | 1071 | 802
Kansas City 798 | 656 * 447 | 592 | 248
Minneapolis | 1068 | 713 | 447 | = | 394 | 695
Pierre 1361 {1071 | 592 | 394 | = | 760
Tulsa 772 | 802 | 248 | 695 | 760 | +

42,

43.

45,

47.

trip in his home city of Atlanta. His travel costs (gas, insur-
ance, etc.) average $0.75 per mile.

(a) Find the nearest-neighbor tour with Atlanta as the
starting city. What is the total cost of this tour?

(b) Find the nearest-neighbor tour using Kansas City as
the starting city. Write the tour as it would be traveled
by Darren, who must start and end the trip in Atlanta.

What is the total cost of this tour?

The Platonic Cowboys are a country and western band
based in Nashville. The Cowboys are planning a concert
tour to the seven cities in the mileage chart shown in
Fig. 6-46.

{a) Find the nearest-neighbor tour with Nashville as the
starting city. What is the total length of this tour?

(b) Find the nearest-neighbor tour using St. Louis as the
starting city. Write the tour as it would be traveled
by the band, which must start and end the tour in

Nashville. What is the total length of this tour?

Mileage Chart
s l2 2| B2
Elg|S|E|E|2]|¢
2 |31 8|8B |2 |8+
-] a = - z. &~ @
Boston = (1748 {1804 | 941 {1088 | 561 {1141
Dallas 17481 « | 243 | 819 | 660 |1204 | 630
Houston | 18041 243 | = | 928 | 769 | 1313 | 779
Louisville { 941 | 819 | 928 % 168 | 388 | 263
Nashville | 10881 660 | 769 | 168 % 553 | 299
Pittsburgh | 561 [1204 [1313 | 388 | 553 | = | 588
St.Louis | 1141 630 | 779 | 263 | 299 | 588 | =
FIGURE 6-46

Find the repetitive nearest-neighbor tour (and give its cost)
for the furniture truck TSP discussed in Exercises 29 and 39
(see Fig. 6-39).

. Find the repetitive nearest-neighbor tour for the social

worker TSP discussed in Exercises 30 and 40 (see Fig. 6-40).

This exercise is a continuation of Darren’s sales trip prob-
lem (Exercise 41). Find the repetitive nearest-neighbor
tour, and give the total cost for this tour. Write the answer
using Atlanta as the starting city.

. This exercise is a continuation of the Platonic Cowboys con-

cert tour (Exercise 42). Find the repetitive nearest-neighbor
tour, and give the total mileage for this tour. Write the an-
swer using Nashville as the starting city.

Suppose thatinsolving a TSP you use the nearest-neighbor
algorithm and find a nearest-neighbor tour with a total
cost of $13,500. Suppose that you later find out that the
cost of an optimal tour is $12,000. What was the relative
error of your nearest-neighbor tour? Express your an-
swer as a percentage, rounded to the nearest tenth of a
percent.

s

-



48. Suppose thatin solvinga TSP you use the nearest-neighbor
algorithm and find a nearest-neighbor tour with a total
length of 21,400 miles. Suppose that you later find out that
the length of an optimal tour is 20,100 miles. ‘What was
the relative error of your nearest-neighbor tour? Express

your answer as a percentage, rounded to the nearest tenth
of a percent.

6.t Cheapest-Link Algorithm
49.

Find the cheapest-link tour (and give its cost) for the furni-
ture truck TSP discussed in Exercise 29 (see Fig. 6-39).

50. Find the cheapest-link tour for the social worker TSP dis-

cussed in Exercise 30 (see Fig. 6-40).

§1. For the Brute-Force Bandits concert tour discussed in Ex-

ercise 37, find the cheapest-link tour, and give the bus cost
for this tour (see Fig. 6-43). ‘

52

For the weighted graph shown in Fig. 6-47, find the cheapest-
link tour. Write the tour using B as the starting vertex.

FIGURE 6-47

33. For Darren’s sales trip problem discussed in Exercise 41,
find the cheapest-link tour, and give the total cost for this

tour (see Fig. 6-45).

. For the Platonic Cowboys concert tour discussed in Exer-
cise 42, find the cheapest-link tour, and give the total mile-
age for this tour (see Fig. 6-46).

55. A rover on the planet Mercuria has to visit six sites labeled

A through F. Figure 6-48 shows the time (in days) for the
Tover to travel between any two sites.

{a) Find the cheapest-link tour for these sites and give its
length.

(b) Given that the tour A, B, D, F, C, E, A is an optimal
tour, find the relative error of the cheapest-link tour

found in (a).

AIB|C|D|E|F
Al =|11119{16f 9 |10
B 11} * j20}13}171}15
Ci{19{20} = 21113} 11
Dl16j13j21| = {12} 16
E§ 91711312} = {14
Fl10|15{11116{14] =

FIGURE 6-48

56. A robotic laser must drill holes on five sites (4, B, C,D,
and E) in a microprocessor chip. At the end, the laser
must return to its starting position 4 and start all over.
Figure 6-49 shows the time (in seconds) it takes the la-
ser arm {o move from one site to another. In this TSP, a
tour is a sequence of drilling locations starting and end-
ing at A.

{a) Find the cheapest-link tour and its length.

(b) Given that the tour 4, D, B, E, C, Ais an optimal tour,

find the relative error of the cheapest-link tour found
in (a).

A| B
* 112
124 =
0.7
1.0
1.3

FIGURE 6-49

0.7
0.9
09 =

0.8
1.1

1.0
0.8
12
12] =

0.8

13
1.1
0.8
0.9
09] =

RO ]

JOGGING

57. Suppose that in solving a TSP you find an approximate so-
lution with a cost of $1614, and suppose that you later find
out that the relative error of your solution was 7.6%. What
was the cost of the optimal solution?

58. Suppose that in solving a TSP you find an approximate so-

lution with a cost of $2508, and suppose that you later find
out that the relative error of your solution was 4.5%. What
was the cost of the optimal solution?

59. You have a busy day ahead of you. You must run the fol-

lowing errands (in no particular order): Go to the post
office, deposit a check at the bank, pick up some French
bread at the deli, visit a friend at the hospital, and get a
haircut at Karl’s Beauty Salon. You must start and end at
home. Each block on the map shown in Fig. 6-50 is exactly
1 mile.

la) Draw a weighted graph modeling to this problem.

(b) Find an optimal tour for ruming all the errands.
(Use any algorithm you think is appropriate.)

Post Office

e

o

S S

e



In Exercises 60 and 61, you are scheduling a dinner party for six
people (A, B, C, D, E, and F). The guests are to be seated around
a circular table, and you want to arrange the seating so that each
guest is seated between two friends (i.e., the guests to the left and
to the right are friends of the guest in between). You can assume
that all friendships are mutual (when X is a friend of Y, Y is also
a friend of X).

60.

61.

62.

63.

64.

65.

Suppose that you are told that all possible friendships can
be deduced from the following information:

A is friends with B and F; B is friends with A, C, and E: Cis
friends with B, D, E, and F; E is friends with B, C,D,and F.

(a)
(b)

{c) Is there a possible seating arrangement in which B and
" E are seated next to each other? If there is, find it. If
there isn’t, explain why not.

Draw a “friendship graph” for the dinner guests.

Find a possible seating arrangement for the party.

Suppose that you are told that all possible friendships can
be deduced from the following information:

A is friends with C, D, E, and F; B is friends with C, D,
and E; C is friends with A, B, and E; D is friends with A,
B,and E.

Explain why it is impossible to have a seating arrangement
in which each guest is seated between friends.

If the number of edges in Ky is x and the number of edges
in Ksp is y, what is the value of y — x?

A 2 by 2 grid graph. The graph shown in Fig. 6-51 represents
a street grid that is 2 blocks by 2 blocks. (Such a graph is
called a 2 by 2 grid graph.) For convenience, the vertices are
labeled by type: corner vertices Cy, C,, Cs, and Cy, boundary
vertices By, B;, Bs, and By, and the interior vertex I.

(o) Find a Hamilton path in the graph that starts at I.

{b) Find a Hamilton path in the graph that starts at one
of the corner vertices and ends at a different corner
vertex.

()

Find a Hamilton path that starts at one of the corner
vertices and ends at I.

Find (if you can) a Hamilton path that starts at one of
- the corner vertices and ends at one of the boundary
vertices. If this is impossible, explain why.

B;
FIGURE 6-51

Find (if you can) a Hamilton circuit in the 2 by 2 grid graph
discussed in Exercise 63. If this is impossible, explain why.

A 3 by 3 grid graph. The graph shown in Fig. 6-52 repre-
sents a street grid that is 3 blocks by 3 blocks. The graph has
four corner vertices (Cy, Cy, Cs, and C,), eight boundary

66.

67.

68.

69.

vertices (B; through Bg), and four interior vertices (L L, I,
and I).

(a) Find a Hamilton circuit in the graph.

(b) Find 2 Hamilton path in the graph that starts at one
of the corner vertices and ends at a different corner
vertex.

{c) Find (if you can) a Hamilton path that starts at one
of the corner vertices and ends at one of the interior

vertices. If this is impossible, explain why.

{d) Given any two adjacent vertices of the graph, explain
why there always is a Hamilton path that starts at one

and ends at the other one.

FIGURE 6-52

A 3 by 4 grid graph. The graph shown in Fig. 6-53 repre-
sents a street grid that is 3 blocks by 4 blocks.

(a)
{b)

Draw a Hamilton circuit in the graph.

Draw a Hamilton path in the graph that starts at C; and
ends at C,.

() Draw (if you can) a Hamilton path in the graph
that starts at C; and ends at C,. If this is impossible,

explain why.
& &)
G, i
FIGURE 6-53

Explain why the cheapest edge in any graph is always part
of the Hamilton circuit obtained using the nearest-neighbor
algorithm.

(@) Explain why a graph that has a bridge cannot have a
Hamilton circuit.

{b) Give an example of a graph with bridges that has a
" Hamilton path.

Nick is a traveling salesman. His territory consists of the 11
cities shown on the mileage chart in Fig. 6-54. Nick must
find a tour that starts and ends in Dallas (that’s his home)
and visits each of the other 10 cities.

o) Finda nearest-neighbor tour that starts at Dallas.
{b) ' Find the cheapest-link tour.

—



Mileage Chart

oy 2

« e 2 g (2 .-';': 2

< & a 5 3 a 2 = =z = s
Atlanta * 1037 859 674 533 795 1398 789 798 382 371
Boston 1037 * 446 963 735 1748 1949 1804 1391 941 1293
Buffalo 859 446 * 522 326 1346 1508 1460 966 532 899
Chicago 674 963 522 * 308 917 996 1067 499 292 530
Columbus 533 735 326 308 * 1028 1229 1137 656 209 576
Dallas 795 1748 1346 917 1028 % 781 243 489 819 452
Denver 1398 1949 1508 996 1229 781 * 1019 600 1120 | 1040 ]
Houston 789 1804 1460 1067 1137 243 1019 * 710 928 561
Kansas City 798 1391 966 499 656 489 600 710 * 520 451
Louisville 382 941 532 292 209 819 1120 928 520 ® 367
Memphis 371 1293 899 530 576 452 1040 561 451 367 %

FIGURE 6-54

70. Julie is the marketing manager for a small software compa-

ny based in Boston. She is planning a sales trip to Michigan

to visit customers in each of the nine cities shown on the
mileage chart in Fig. 6-55. She can fly from Boston to any
one of the cities and fly out of any one of the cities back to
Boston for the same price (call the arrival city A and the
departure city D). Her plan is to pick up a rental car at A,
drive to each of the other cities, and drop off the rental car
at the last city D. Slightly complicating the situation is that
Michigan has two separate peninsulas—an upper peninsula
and a lower peninsula—and the only way to get from one to
the other is through the Mackinaw Bridge connecting Che-
boygan to Sault Ste. Marie. (There is a $3 toll to cross the
bridge in either direction.)

Mileage Chart
@ 'E
:egu" g § &2 ]
iP5 HEIRE g
S|E|8 12|28 5|§]3
Al=IC|E|O|AIS 48] =
Detroit = | 90 {1581} 68 {280
Lansing 90 | = § 68| 56 {221
Grand Rapids | 158 68 | * |114]233
Flint 68 1 56 {114 = |215
Cheboygan 2801221 12331215{ = { 78
Sault Ste. Marie 78 | = {164174]227
Marquette 1641 = | 67 {120
Escanaba 1741 67 | = | 55
Menominee 22711201 55 | =

{a) Suppose that the rental car company charges 39 cents
per mile plus a drop off fee of $250 if A and D are dif-
ferent cities (there is no charge if A = D). Find the op-
timal (cheapest) route and give the total cost.

{b) Suppose that the rental car company charges 49 cents
per mile but the car can be returned to any city without
a drop off fee. Find the optimal route and give the total
COost.

RUNNING

71. Complete bipartite graphs. A complete bipartite graph is

a graph with the property that the vertices can be divided
into two sets A and B and each vertex in set 4 is adjacent
to each of the vertices in set B. There are no other edges! If
there are m vertices in set 4 and n vertices in set B, the com-
plete bipartite graph is written as K, ». Figure 6-56 shows a
generic bipartite graph.

{a} For n>1, the complete bipartite graphs of the form
K, , all have Hamilton circuits. Explain why.

m vertices

)
V;’V/Ly/



72.

{b) If the difference between m and n is exactly 1 (ie.,
|m — n| =1), the complete bipartite graph K., has a
Hamilton path. Explain why.

{c) When the difference between m and 7 is more than 1,
then the complete bipartite graph K, , has neither a
Hamilton circuit nor a Hamilton path. Explain why.

m by n grid graphs. An m by n grid graph represents a rect-
angular street grid that is m blocks by n blocks, as indicated
in Fig. 6-57. (You should try Exercises 63 through 66 before
you try this one.)

{a) Ifmand n are both odd, then the m by n grid graph has

a Hamilton circuit. Describe the circuit by drawing it -

on a generic graph.

FIGURE 6-57

73.

74.

{b) If either 7 or n is even and the other one is odd, then
the m by n grid graph has a Hamilton circuit. Describe
the circuit by drawing it on a generic graph.

{c) If m and n are both even, then the m by n grid graph
does not have a Hamilton circuit. Explain why a
Hamilton circuit is impossible.

Ore’s theorem. A connected graph with N vertices is said to
satisfy Ore’s condition if deg(X) + deg(Y) = N for every
pair of vertices X and Y of the graph. Ore’s theorem states
that if a graph satisfies Ore’s condition, then it has a Hamilton
circuit.

(o) Explain why the complete bipartite graph K, , (see
Exercise 71) satisfies Ore’s condition.

(b) Explain why for m # n, the complete bipartite graph
K., » (see Exercise 71) does not satisfy Ore’s condition.

{c) Ore’s condition is sufficient to guarantee that a con-
nected graph has a Hamilton circuit but is not a nec-
essary condition. Give an example of a graph that
has a Hamilton circuit but does not satisfy Ore’s con-
dition.

Dirac’s theorem. If G is a connected graph with N vertices
and deg(X) Zg for every vertex X, then G has a Hamil-
ton circuit. Explain why Dirac’s theorem is a direct conse-
quence of Ore’s theorem.



