Review-Vectors/parametric

Date \qquad Period \qquad
Find the magnitude for each vector.

1) $\mathbf{a}=\langle 19,-45\rangle$

Write each vector in component form.
2) $\overrightarrow{A B}$ where $A=(-8,-1) B=(-4,0)$
3) $|\mathbf{n}|=25,224^{\circ}$

Find the direction angle for each vector.
4) $-35 \mathbf{i}+23 \mathbf{j}$

Sketch a graph of each vector.
5) $\overrightarrow{A B}$ where $A=(2,5) B=(7,3)$

Draw a vector diagram to find the resultant of each pair of vectors using the triangle method.
6) $\mathbf{m}=\langle 11,5\rangle \mathbf{n}=\langle 9,-12\rangle$

Find the component form of the resultant vector.
7) $\mathbf{u}=\langle-4,5\rangle$
$\mathbf{g}=\langle-8,-8\rangle$
Find: $\mathbf{u}+10 \mathbf{g}$
8) $\mathbf{u}=\langle-11,6\rangle$
Unit vector in the opposite direction of \mathbf{u}

Find the dot product of the given vectors.
9) $\mathbf{u}=\langle 7,-2\rangle$
$\mathbf{v}=\langle 9,-4\rangle$

State if the two vectors are parallel, orthogonal, or neither.
10) $\mathbf{u}=\langle-9,0\rangle$
$\mathbf{v}=\langle 0,-9\rangle$
11) $\mathbf{u}=\langle-3,0\rangle$ $\mathbf{v}=\langle 0,6\rangle$

Find the measure of the angle between the two vectors.
12) $\mathbf{u}=\langle-1,4\rangle$
$\mathbf{v}=\langle-2,-8\rangle$

Write each pair of parametric equations in rectangular form.
13) $x=-\frac{t^{2}}{5}, y=t$
14) $x=-\frac{t^{2}}{6}, y=t$
15) $x=5 \cos t, y=5 \sin t$

Sketch the curve for each pair of parametric equations.

16) $x=5 \sin t, y=5 \cos t$
17) A frog jumps across the floor at an angle of 60° with an initial speed of $8 \mathrm{ft} / \mathrm{s}$.
i) Write a set of parametric equations for the motion of the frog.
ii) Determine how long the frog was in the air.
iii) Determine how far the frog traveled in the air.
iv) Determine when the frog reached its maximum height.
v) Determine the maximum height reached by the frog.
18) A rabbit jumps across the floor at an angle of 71° with an initial speed of $3 \mathrm{~m} / \mathrm{s}$.
i) Write a set of parametric equations for the motion of the rabbit.
ii) Determine how long the rabbit was in the air.
iii) Determine how far the rabbit traveled in the air.
iv) Determine when the rabbit reached its maximum height.
v) Determine the maximum height reached by the rabbit.
vi) Sketch the graph of the parametric equations.

