Precalculus	Name		ID: 1
Review-Vectors/parametric		Date	Period
Find the magnitude for each vector.			
1) a = $\langle 19, -45 \rangle$			

Write each vector in component form.

2)
$$\overrightarrow{AB}$$
 where $A = (-8, -1)$ $B = (-4, 0)$
3) $|\mathbf{n}| = 25, 224^{\circ}$

Find the direction angle for each vector.

4) -35**i** + 23**j**

Sketch a graph of each vector.

5) \overrightarrow{AB} where A = (2, 5) B = (7, 3)

Draw a vector diagram to find the resultant of each pair of vectors using the triangle method.

6) $\mathbf{m} = \langle 11, 5 \rangle \mathbf{n} = \langle 9, -12 \rangle$

Find the component form of the resultant vector.

7) $\mathbf{u} = \langle -4, 5 \rangle$ $\mathbf{g} = \langle -8, -8 \rangle$ Find: $\mathbf{u} + 10\mathbf{g}$ 8) $\mathbf{u} = \langle -11, 6 \rangle$ Unit vector in the opposite direction of \mathbf{u}

Find the dot product of the given vectors.

9) $\mathbf{u} = \langle 7, -2 \rangle$ $\mathbf{v} = \langle 9, -4 \rangle$

State if the two vectors are parallel, orthogonal, or neither.

10) $\mathbf{u} = \langle -9, 0 \rangle$ $\mathbf{v} = \langle 0, -9 \rangle$ 11) $\mathbf{u} = \langle -3, 0 \rangle$ $\mathbf{v} = \langle 0, 6 \rangle$

Find the measure of the angle between the two vectors.

12) $\mathbf{u} = \langle -1, 4 \rangle$ $\mathbf{v} = \langle -2, -8 \rangle$

Write each pair of parametric equations in rectangular form.

13)
$$x = -\frac{t^2}{5}, y = t$$
 14) $x = -\frac{t^2}{6}, y = t$

15) $x = 5\cos t, y = 5\sin t$

Sketch the curve for each pair of parametric equations.

16) $x = 5\sin t, y = 5\cos t$

- 17) A frog jumps across the floor at an angle of 60° with an initial speed of 8 ft/s.
 - i) Write a set of parametric equations for the motion of the frog.
 - ii) Determine how long the frog was in the air.
 - iii) Determine how far the frog traveled in the air.
 - iv) Determine when the frog reached its maximum height.
 - v) Determine the maximum height reached by the frog.

- 18) A rabbit jumps across the floor at an angle of 71° with an initial speed of 3 m/s.
 - i) Write a set of parametric equations for the motion of the rabbit.
 - ii) Determine how long the rabbit was in the air.
 - iii) Determine how far the rabbit traveled in the air.
 - iv) Determine when the rabbit reached its maximum height.
 - v) Determine the maximum height reached by the rabbit.
 - vi) Sketch the graph of the parametric equations.

