UNIT 7

Module

25

Proving Theorems about Parallelograms

Contents

MCC9-12.G.co.11 Task 25-1 Explore Properties of Parallelograms 732
MCC9-12.G.C0.11 25-1 Properties of Parallelograms . 733
MCC9-12.G.C0.11 25-2 Conditions for Parallelograms . 740
MCC9-12.G.C0.11 25-3 Properties of Special Parallelograms . 748
MCC9-12.G.C0.11 Task 25-4 Predict Conditions for Special Parallelograms 756
MCC9-12.G.C0.11 25-4 Conditions for Special Parallelograms. 758
Ready to Go On? Module Quiz . 766
marrematical The Common Core Georgia Performance Standards for Mathematical Practice PRACTICES describe varieties of expertise that all students should seek to develop.
Opportunities to develop these practices are integrated throughout this program.

1 Make sense of problems and persevere in solving them.
2 Reason abstractly and quantitatively.
3 Construct viable arguments and critique the reasoning of others.

5 Use appropriate tools strategically.
6 Attend to precision.
7 Look for and make use of structure.
8 Look for and express regularity in repeated reasoning.

4 Model with mathematics.

Unpacking the Standards

my.hrw.com
Multilingual Glossary

Understanding the standards and the vocabulary terms in the standards will help you know exactly what you are expected to learn in this chapter.

COMMON CORE GPS
 MCC9-12.G.CO. 11

Prove theorems about parallelograms.
Key Vocabulary
parallelogram (paralelogramo)
A quadrilateral with two pairs of parallel sides.

What It Means For You

Parallelograms, including rectangles and squares, are everywhere around you. You can prove the many special relationships about their sides and angles that make them so important.

EXAMPLE

Use with Properties of Parallelograms

Activity

Explore Properties of Parallelograms

In this task, you will investigate the relationships among the angles and sides of a special type of quadrilateral called a parallelogram. You will need to apply the Transitive Property of Congruence. That is, if figure $A \cong$ figure B and figure $B \cong$ figure C, then figure $A \cong$ figure C.

MCC9-12.G.C0.11 Prove theorems about parallelograms.
(1) Use opposite sides of an index card to draw a set of parallel lines on a piece of patty paper. Then use opposite sides of a ruler to draw a second set of parallel lines that intersects the first. Label the points of intersection A, B, C, and D, in that order. Quadrilateral $A B C D$ has two pairs of parallel sides. It is a parallelogram.
(2) Place a second piece of patty paper over the first and trace $A B C D$. Label the points that correspond to A, B, C, and D as Q, R, S, and T, in that order. The parallelograms $A B C D$ and QRST are congruent. Name all the pairs of congruent corresponding sides and angles.
(3) Lay $A B C D$ over $Q R S T$ so that $\overline{A B}$ overlays $\overline{S T}$. What do you notice about their lengths? What does this tell you about $\overline{A B}$ and $\overline{C D}$? Now move $A B C D$ so that $\overline{D A}$ overlays $\overline{R S}$. What do you notice about their lengths? What does this tell you about $\overline{D A}$ and $\overline{B C}$?

Lay $A B C D$ over $Q R S T$ so that $\angle A$ overlays $\angle S$. What do you notice about their measures? What does this tell you about $\angle A$ and $\angle C$? Now move $A B C D$ so that $\angle B$ overlays $\angle T$. What do you notice about their measures?
 What does this tell you about $\angle B$ and $\angle D$?
(5) Arrange the pieces of patty paper so that $\overline{R S}$ overlays $\overline{A D}$. What do you notice about $\overline{Q R}$ and $\overline{A B}$? What does this tell you about $\angle A$ and $\angle R$? What can you conclude about $\angle A$ and $\angle B$?
(6) Draw diagonals $\overline{A C}$ and $\overline{B D}$. Fold $A B C D$ so that A matches C, making a crease. Unfold the paper and fold it again so that B matches D, making another crease. What do you notice about the creases? What can you conclude
 about the diagonals?

Try This

1. Repeat the above steps with a different parallelogram. Do you get the same results?
2. Make a Conjecture How do you think the sides of a parallelogram are related to each other? the angles? the diagonals? Write your conjectures as conditional statements.

25-1 Properties of Parallelograms

Essential Question: If a quadrilateral is a parallelogram, what are some conclusions you can make about its angles, sides, and diagonals?

Objectives

Prove and apply properties of parallelograms.
Use properties of parallelograms to solve problems.

Vocabulary

 parallelogram
Helpful Hint

Opposite sides of a quadrilateral do not share a vertex. Opposite angles do not share a side.

Who uses this?

Race car designers can use a parallelogram-shaped linkage to keep the wheels of the car vertical on uneven surfaces. (See Example 1.)

Any polygon with four sides is a quadrilateral. However,
 some quadrilaterals have special properties. These special quadrilaterals are given their own names.

A quadrilateral with two pairs of parallel sides is a parallelogram. To write the name of a parallelogram, you use the symbol \square.

Parallelogram $A B C D$ $\square A B C D$

Theorem 25-1-1 Properties of Parallelograms

THEOREM	HYPOTHESIS	
	CONCLUSION	
If a quadrilateral is a parallelogram, then its opposite sides are congruent. $(\square \rightarrow$ opp. sides $\cong)$		$\overline{A B} \cong \overline{C D}$
$\overline{B C} \cong \overline{D A}$		

Theorem 25-1-1
Given: JKLM is a parallelogram. Prove: $\overline{J K} \cong \overline{L M} \overline{K L} \cong \overline{M J}$

Proof:

Statements	Reasons		
1. $J K L M$ is a parallelogram.	1. Given		
2. $\overline{J K}\\|\overline{L M}, \overline{K L}\\| \overline{M J}$	2. Def. of \square		
3. $\angle 1 \cong \angle 2, \angle 3 \cong \angle 4$	3. Alt. Int. $\angle \mathrm{Thm}$.		
4. $\overline{J L} \cong \overline{J L}$	4. Reflex. Prop. of \cong		
5. $\triangle J K L \cong \triangle L M J$	5. ASA Steps 3,4		
6. $\overline{J K} \cong \overline{L M}, \overline{K L} \cong \overline{M J}$	6. CPCTC		

Theorems Properties of Parallelograms

	THEOREM	HYPOTHESIS	CONCLUSION
25-1-2	If a quadrilateral is a parallelogram, then its opposite angles are congruent. $(\square \rightarrow$ opp. $\measuredangle \cong)$		$\begin{aligned} & \angle A \cong \angle C \\ & \angle B \cong \angle D \end{aligned}$
$25-1-3$	If a quadrilateral is a parallelogram, then its consecutive angles are supplementary. ($\square \rightarrow$ cons. \&s supp.)		$\begin{aligned} & \mathrm{m} \angle A+\mathrm{m} \angle B=180^{\circ} \\ & \mathrm{m} \angle B+\mathrm{m} \angle \mathrm{C}=180^{\circ} \\ & \mathrm{m} \angle \mathrm{C}+\mathrm{m} \angle D=180^{\circ} \\ & \mathrm{m} \angle D+\mathrm{m} \angle A=180^{\circ} \end{aligned}$
$25-1-4$	If a quadrilateral is a parallelogram, then its diagonals bisect each other. ($\square \rightarrow$ diags. bisect each other)		$\begin{aligned} & \overline{A Z} \cong \overline{C Z} \\ & \overline{B Z} \cong \overline{D Z} \end{aligned}$

You will prove Theorems 25-1-3 and 25-1-4 in Exercises 45 and 44.

common CORE GPS
 EXAMPLE MCC9-12.G.MG. 1

my.hrw.com

Online Video Tutor

1 Racing Application
The diagram shows the parallelogram-shaped linkage that joins the frame of a race car to one wheel of the car. In $\square P Q R S$, $Q R=48 \mathrm{~cm}, R T=30 \mathrm{~cm}$, and $\mathrm{m} \angle Q P S=73^{\circ}$. Find each measure.

A PS

$$
\begin{array}{ll}
\overline{P S} \cong \overline{Q R} & \square \rightarrow \text { opp. sides } \cong \\
P S=Q R & \text { Def. of segs. } \\
P S=48 \mathrm{~cm} & \text { Substitute } 48 \text { for } Q R .
\end{array}
$$

B $\mathrm{m} \angle P Q R$

$$
\begin{array}{rlrl}
\mathrm{m} \angle P Q R+\mathrm{m} \angle Q P S & =180^{\circ} & & \square \rightarrow \text { cons. } \begin{array}{l}
\text { s supp. } \\
\mathrm{m} \angle P Q R+73
\end{array} \\
=180 & & \text { Substitute } 73 \text { for } m \angle Q P S . \\
\mathrm{m} \angle P Q R & =107^{\circ} & & \text { Subtract } 73 \text { from both sides. }
\end{array}
$$

C $P T$

$$
\begin{array}{ll}
\overline{P T} \cong \overline{R T} & \square \rightarrow \text { diags. bisect each other } \\
P T=R T & \text { Def. of } \cong \text { segs. } \\
P T=30 \mathrm{~cm} & \text { Substitute } 30 \text { for } R T .
\end{array}
$$

In $\square K L M N, L M=28 \mathrm{in}$.,
$L N=26$ in., and $\mathrm{m} \angle L K N=74^{\circ}$. Find each measure.
1a. $K N$
1b. $\mathrm{m} \angle N M L$
1c. $L O$

my.hrw.com

Online Video Tutor
$A B C D$ is a parallelogram. Find each measure.
A

$$
\begin{aligned}
\overline{A D} & & \cong \overline{B C} & \\
A D & =B C & & \square \rightarrow \text { opp. sides } \cong \\
7 x & =5 x+19 & & \text { Substitute the given values. } \\
2 x & =19 & & \text { Subtract } 5 x \text { from both sides. } \\
x & =9.5 & & \text { Divide both sides by } 2 .
\end{aligned}
$$

$$
A D=7 x=7(9.5)=66.5
$$

B $\mathrm{m} \angle B$

$$
\begin{array}{rlrl}
\mathrm{m} \angle A+\mathrm{m} \angle B & =180^{\circ} & & \square \rightarrow \text { cons. } \stackrel{\rightharpoonup}{ } \text { supp. } \\
(10 y-1)+(6 y+5) & =180 & & \text { Substitute the given values. } \\
16 y+4 & =180 & & \text { Combine like terms. } \\
16 y & =176 & & \text { Subtract } 4 \text { from both sides. } \\
y & =11 & & \text { Divide both sides by } 16 . \\
\mathrm{m} \angle B=(6 y+5)^{\circ}=[6(11)+5]^{\circ}=71^{\circ}
\end{array}
$$

CHECK
 IT OUT!

$E F G H$ is a parallelogram. Find each measure.
2a. $J G$
2b. $F H$

Parallelograms in the Coordinate Plane

Three vertices of $\square A B C D$ are $A(1,-2), B(-2,3)$,
my.hrw.com

Online Video Tutor

Remember!

When you are drawing a figure in the coordinate plane, the name $A B C D$ gives the order of the vertices.
and $D(5,-1)$. Find the coordinates of vertex C.
Since $A B C D$ is a parallelogram, both pairs of opposite sides must be parallel.

Step 1 Graph the given points.
Step 2 Find the slope of $\overline{A B}$ by counting the units from A to B.
The rise from -2 to 3 is 5 .
The run from 1 to -2 is -3 .
Step 3 Start at D and count the same number of units.
A rise of 5 from -1 is 4 .

A run of -3 from 5 is 2 . $\operatorname{Label}(2,4)$ as vertex C.
Step 4 Use the slope formula to verify that $\overline{B C} \| \overline{A D}$.
slope of $\overline{B C}=\frac{4-3}{2-(-2)}=\frac{1}{4}$
slope of $\overline{A D}=\frac{-1-(-2)}{5-1}=\frac{1}{4}$
The coordinates of vertex C are $(2,4)$.
3. Three vertices of $\square P Q R S$ are $P(-3,-2), Q(-1,4)$, and $S(5,0)$. Find the coordinates of vertex R.

EXAMPLE MCC9-12.G.C0.11

my.hrw.com

Online Video Tutor
4 Using Properties of Parallelograms in a Proof

Write a two-column proof.

A
Theorem 25-1-2
Given: $A B C D$ is a parallelogram.

Prove: $\angle B A D \cong \angle D C B, \angle A B C \cong \angle C D A$
Proof:

Statements	Reasons
1. $A B C D$ is a parallelogram.	1. Given
2. $\overline{A B} \cong \overline{C D}, \overline{D A} \cong \overline{B C}$	2. $\square \rightarrow$ opp. sides \cong
3. $\overline{B D} \cong \overline{B D}$	3. Reflex. Prop. of \cong
4. $\triangle B A D \cong \triangle D C B$	4. SSS Steps 2,3
5. $\angle B A D \cong \angle D C B$	5. CPCTC
6. $\overline{A C} \cong \overline{A C}$	6. Reflex. Prop. of \cong
7. $\triangle A B C \cong \triangle C D A$	7. SSS Steps 2,6
8. $\angle A B C \cong \angle C D A$	8. CPCTC

B Given: GHJN and JKLM are parallelograms. H and M are collinear. N and K are collinear.
Prove: $\angle G \cong \angle L$
Proof:

Statements	Reasons
1. $G H J N$ and $J K L M$ are parallelograms.	1. Given
2. $\angle H J N \cong \angle G, \angle M J K \cong \angle L$	2. $\square \rightarrow$ opp. $\measuredangle \cong$
3. $\angle H J N \cong \angle M J K$	3. Vert. $\angle \mathrm{s}$ Thm.
4. $\angle G \cong \angle L$	4. Trans. Prop. of \cong

4. Use the figure in Example 4B to write a two-column proof.

Given: GHJN and JKLM are parallelograms.
H and M are collinear. N and K are collinear.
Prove: $\angle N \cong \angle K$

GUIDED PRACTICE

Vocabulary Apply the vocabulary from this lesson to answer each question.

1. Explain why the figure at right is NOT a parallelogram.
2. Draw $\square P Q R S$. Name the opposite sides and opposite angles.

SEE EXAMPLE

SEE EXAMPLE 2 $J K L M$ is a parallelogram. Find each measure.
9. $J K$
10. $L M$
11. $\mathrm{m} \angle L$
12. $\mathrm{m} \angle M$

13. Multi-Step Three vertices of $\square D F G H$ are $D(-9,4), F(-1,5)$, and $G(2,0)$. Find the coordinates of vertex H.

SEE EXAMPLE 4
14. Write a two-column proof.

Given: $P S T V$ is a parallelogram. $\overline{P Q} \cong \overline{R Q}$ Prove: $\angle S T V \cong \angle R$

PRACTICE AND PROBLEM SOLVING

Independent Practice	
For Exercises	See Example
$15-20$	1
$21-24$	2
25	3
26	4

my.hrw.com

Online Extra Practice
Safety The handrail is made from congruent parallelograms. In $\square A B C D, A B=17.5, D E=18$, and $\mathrm{m} \angle B C D=110^{\circ}$. Find each measure.
3. $B D$
4. $C D$
5. $B E$
6. $\mathrm{m} \angle A B C$
7. $\mathrm{m} \angle A D C$
8. $\mathrm{m} \angle D A B$

Shipping Cranes can be used to load cargo onto ships. In $\square J K L M, J L=165.8$, $J K=110$, and $\mathrm{m} \angle J M L=50^{\circ}$. Find the measure of each part of the crane.
15. $J N$
16. $L M$
17. $L N$
18. $\mathrm{m} \angle J K L$
19. $\mathrm{m} \angle K L M$
20. $\mathrm{m} \angle M J K$

$W X Y Z$ is a parallelogram. Find each measure.
21. WV
22. $Y W$
23. $X Z$
24. $Z V$

25. Multi-Step Three vertices of $\square P R T V$ are $P(-4,-4), R(-10,0)$, and $V(5,-1)$. Find the coordinates of vertex T.
26. Write a two-column proof.

Given: $A B C D$ and $A F G H$ are parallelograms.
Prove: $\angle C \cong \angle G$

Algebra The perimeter of $\square P Q R S$ is 84 . Find the length of each side of $\square P Q R S$ under the given conditions.
27. $P Q=Q R$
28. $Q R=3(R S)$
29. $R S=S P-7$
30. $S P=R S^{2}$
31. Cars To repair a large truck, a mechanic might use a parallelogram lift. In the lift, $\overline{F G} \cong \overline{G H} \cong \overline{L K} \cong \overline{K J}$, and $\overline{F L} \cong \overline{G K} \cong \overline{H J}$.
a. Which angles are congruent to $\angle 1$? Justify your answer.
b. What is the relationship between $\angle 1$ and each of the remaining labeled angles? Justify your answer.

Complete each statement about $\square K M P R$. Justify your answer.
32. $\angle M P R \cong$ \qquad 33. $\angle P R K \cong$ \qquad 34. $\overline{M T} \cong$ \qquad
35. $\overline{P R} \cong$ \qquad 36. $\overline{M P} \|$ \qquad 37. $\overline{M K} \|$ \qquad

38. $\angle M P K \cong$ \qquad
39. $\angle M T K \cong$ \qquad 40. $\mathrm{m} \angle M K R+\mathrm{m} \angle P R K=$ \qquad
Find the values of x, y, and z in each parallelogram.
41.

42.

43.

44. Complete the paragraph proof of Theorem 25-1-4 by filling in the blanks.
Given: $A B C D$ is a parallelogram.
Prove: $\overline{A C}$ and $\overline{B D}$ bisect each other at E.

Proof: It is given that $A B C D$ is a parallelogram. By the definition of a parallelogram, $\overline{A B} \| \mathrm{a}$. \qquad . By the Alternate Interior Angles Theorem, $\angle 1 \cong \mathbf{b}$. \qquad , and $\angle 3 \cong \mathbf{c} . \bar{?} \cdot \overline{A B} \cong \overline{C D}$ because \mathbf{d}. ? . This means that $\triangle A B \overline{E \cong \triangle} C D E$ by e. ? . So by f. ? , $\overline{A E} \cong \overline{C E}$, and $\overline{B E} \cong \overline{D E}$. Therefore $\overline{A C}$ and $\overline{B D}$ bisect each other at E by the definition of \mathbf{g}. \qquad .
H.O.T. 45. Write a two-column proof of Theorem 25-1-3: If a quadrilateral is a parallelogram, then its consecutive angles are supplementary.

Algebra Find the values of x and y in each parallelogram.
46.

47.

Real-World Connections

48. In this calcite crystal, the face $A B C D$ is a parallelogram.
a. In $\square A B C D, \mathrm{~m} \angle B=(6 x+12)^{\circ}$, and $\mathrm{m} \angle D=(9 x-33)^{\circ}$. Find $\mathrm{m} \angle B$.
b. Find $\mathrm{m} \angle A$ and $\mathrm{m} \angle C$. Which theorem or theorems did you use to find these angle measures?

H.OT: 49. Critical Thinking Draw any parallelogram. Draw a second parallelogram whose corresponding sides are congruent to the sides of the first parallelogram but whose corresponding angles are not congruent to the angles of the first.
a. Is there an SSSS congruence postulate for parallelograms? Explain.
b. Remember the meaning of triangle rigidity. Is a parallelogram rigid? Explain.
49. Write About lt Explain why every parallelogram is a quadrilateral but every quadrilateral is not necessarily a parallelogram.

TEST PREP

51. What is the value of x in $\square P Q R S$?
(A) 15
(C) 30
(B) 20
(D) 70

52. The diagonals of $\square J K L M$ intersect at Z. Which statement is true?
(F) $J L=K M$
(G) $J L=\frac{1}{2} K M$
(H) $J L=\frac{1}{2} J Z$
(J) $J L=2 J Z$
53. Gridded Response $\operatorname{In} \square A B C D, B C=8.2$, and $C D=5$. What is the perimeter of $\square A B C D$?

CHALLENGE AND EXTEND

H.O.T. The coordinates of three vertices of a parallelogram are given. Give the coordinates for all possible locations of the fourth vertex.
54. $(0,5),(4,0),(8,5)$
55. $(-2,1),(3,-1),(-1,-4)$
H.OT: 56. The feathers on an arrow form two congruent parallelograms that share a common side. Each parallelogram is the reflection of the other across the line they share. Show that $y=2 x$.

H.O. 57. Prove that the bisectors of two consecutive angles of a parallelogram are perpendicular.

FOCUS ON MATHEMATICAL PRACTICES

H.OTT. 58. Problem Solving A fence uses a pattern of quadrilaterals that are parallelograms like the one shown at the right. Find the value of x and the angle measures of the parallelogram.

H.OT. 59. Modeling A parallelogram has one right angle. What is a more specific name for the parallelogram? Justify your answer.
H.OTT. 60. Error Analysis Tony said the diagonals of a parallelogram are always congruent. Do you agree with Tony? If you disagree, correct his statement.

25-2

Conditions for Parallelograms

Essential Question: What information about the angles, sides, or diagonals of a quadrilateral allows you to conclude it is a parallelogram?

Objective

Prove that a given quadrilateral is a parallelogram.

Who uses this?

A bird watcher can use a parallelogram mount to adjust the height of a pair of binoculars without changing the viewing angle. (See Example 4.)

You have learned to identify the properties of a parallelogram. Now you will be given the properties of a quadrilateral and will have to tell if the quadrilateral is a parallelogram. To do this, you can use the definition of a parallelogram or the conditions below.

Remember!

In the converse of a theorem, the hypothesis and conclusion are exchanged.

You will prove Theorems 25-2-2 and 25-2-3 in Exercises 26 and 29.

Theorem 25-2-1
Given: $\overline{K L} \| \overline{M J}, \overline{K L} \cong \overline{M J}$
Prove: JKLM is a parallelogram.
Proof:

It is given that $\overline{K L} \cong \overline{M J}$. Since $\overline{K L} \| \overline{M J}, \angle 1 \cong \angle 2$ by the Alternate Interior Angles Theorem. By the Reflexive Property of Congruence, $\overline{J L} \cong \overline{J L}$. So $\triangle J K L \cong \triangle L M J$ by SAS. By СРСТС, $\angle 3 \cong \angle 4$, and $\overline{J K} \| \overline{L M}$ by the Converse of the Alternate Interior Angles Theorem. Since the opposite sides of JKLM are parallel, JKLM is a parallelogram by definition.

The two theorems below can also be used to show that a given quadrilateral is a parallelogram.

You will prove Theorems 25-2-4 and 25-2-5 in Exercises 27 and 30.

common CORE GPS
 EXAMPLE MCC9-12.A.CED. 1

my.hrw.com

Online Video Tutor

Verifying Figures are Parallelograms

A Show that $A B C D$ is a parallelogram for $x=7$ and $y=4$.

Step 1 Find $B C$ and $D A$.

$$
\begin{aligned}
& B C=x+14 \\
& B C=7+14=21
\end{aligned}
$$

Given
Substitute and simplify.
$D A=3 x$
$D A=3 x=3(7)=21$
Step 2 Find $A B$ and $C D$.

$$
\begin{array}{lll}
A B=5 y-4 & \text { Given } & C D=2 y+8 \\
A B=5(4)-4=16 & \text { Substitute and simplify. } & C D=2(4)+8=16
\end{array}
$$

Since $B C=D A$ and $A B=C D, A B C D$ is a parallelogram by Theorem 25-2-2.
B Show that EFGH is a parallelogram for $z=11$ and $w=4.5$.

$\mathrm{m} \angle F=(9 z+19)^{\circ}$
$\mathrm{m} \angle F=[9(11)+19]^{\circ}=118^{\circ}$
$\mathrm{m} \angle H=(11 z-3)^{\circ}$
$\mathrm{m} \angle H=[11(11)-3]^{\circ}=118^{\circ}$
$\mathrm{m} \angle G=(14 w-1)^{\circ}$
$\mathrm{m} \angle G=[14(4.5)-1]^{\circ}=62^{\circ}$
Since $118^{\circ}+62^{\circ}=180^{\circ}, \angle G$ is supplementary to both $\angle F$ and $\angle H$. $E F G H$ is a parallelogram by Theorem 25-2-4.

CHECK
IT OUT!

1. Show that $P Q R S$ is a parallelogram for $a=2.4$ and $b=9$.

2 Applying Conditions for Parallelograms
Determine if each quadrilateral must be a parallelogram. Justify your answer.
A

No. One pair of opposite sides are parallel. A different pair of opposite sides are congruent. The conditions for a parallelogram are not met.

B

Yes. The diagonals bisect each other. By Theorem 25-2-5, the quadrilateral is a parallelogram.

COMMON CORE GPS

EXAMPLE

Online Video Tutor

Helpful Hint

To say that a quadrilateral is a parallelogram by definition, you must show that both pairs of opposite sides are parallel.

Determine if each quadrilateral must be a parallelogram.
Justify your answer.
2a.

2b.

3 Proving Parallelograms in the Coordinate Plane

Show that quadrilateral $A B C D$ is a parallelogram by using the given definition or theorem.
A $A(-3,2), B(-2,7), C(2,4), D(1,-1)$; definition of parallelogram Find the slopes of both pairs of opposite sides.
slope of $\overline{A B}=\frac{7-2}{-2-(-3)}=\frac{5}{1}=5$
slope of $\overline{C D}=\frac{-1-4}{1-2}=\frac{-5}{-1}=5$
slope of $\overline{B C}=\frac{4-7}{2-(-2)}=\frac{-3}{4}=-\frac{3}{4}$
slope of $\overline{D A}=\frac{2-(-1)}{-3-1}=\frac{3}{-4}=-\frac{3}{4}$

Since both pairs of opposite sides are parallel, $A B C D$ is a parallelogram by definition.

B $F(-4,-2), G(-2,2), H(4,3), J(2,-1)$; Theorem 25-2-1 Find the slopes and lengths of one pair of opposite sides. slope of $\overline{G H}=\frac{3-2}{4-(-2)}=\frac{1}{6}$
slope of $\overline{J F}=\frac{-2-(-1)}{-4-2}=\frac{-1}{-6}=\frac{1}{6}$
$G H=\sqrt{[4-(-2)]^{2}+(3-2)^{2}}=\sqrt{37}$
$J F=\sqrt{(-4-2)^{2}+[-2-(-1)]^{2}}=\sqrt{37}$

$\overline{G H}$ and $\overline{J F}$ have the same slope, so $\overline{G H} \| \overline{J F}$.
Since $G H=J F, \overline{G H} \cong \overline{J F}$. So by Theorem 25-2-1,
$F G H J$ is a parallelogram.
3. Use the definition of a parallelogram to show that the quadrilateral with vertices $K(-3,0), L(-5,7), M(3,5)$, and $N(5,-2)$ is a parallelogram.

You have learned several ways to determine whether a quadrilateral is a parallelogram. You can use the given information about a figure to decide which condition is best to apply.

Helpfiul Hint

To show that a quadrilateral is a parallelogram, you only have to show only have to show
that it satisfies one of these sets of conditions.

Conditions for Parallelograms

Both pairs of opposite sides are parallel. (definition)
One pair of opposite sides are parallel and congruent. (Theorem 25-2-1)
Both pairs of opposite sides are congruent. (Theorem 25-2-2)
Both pairs of opposite angles are congruent. (Theorem 25-2-3)
One angle is supplementary to both of its consecutive angles. (Theorem 25-2-4)
The diagonals bisect each other. (Theorem 25-2-5)

common CORE GPS
 EXAMPLE MCC9-12.G.MG. 1

my.hrw.com

Online Video Tutor

Bird-Watching Application

In the parallelogram mount, there are bolts at P, Q, R, and S such that $P Q=R S$ and $Q R=S P$. The frame $P Q R S$ moves when you raise or lower the binoculars. Why is $P Q R S$ always a parallelogram?

When you move the binoculars, the angle measures change, but $P Q, Q R$, $R S$, and $S P$ stay the same. So it is always true that $P Q=R S$ and $Q R=S P$. Since both pairs of opposite sides of the quadrilateral are congruent, $P Q R S$ is always a parallelogram.

4. The frame is attached to the tripod at points A and B such that $A B=R S$ and $B R=S A$. So $A B R S$ is also a parallelogram. How does this ensure that the angle of the binoculars stays the same?

THINK AND DISCUSS

1. What do all the theorems in this lesson have in common?
2. How are the theorems in this lesson different from the theorems in the lesson Properties of Parallelograms?
3. GET ORGANIZED Copy and complete the graphic organizer. In each box, write one of the six conditions for a parallelogram. Then sketch a parallelogram and
 label it to show how it meets the condition.

GUIDED PRACTICE

SEE EXAMPLE 1

1. Show that $E F G H$ is a parallelogram for $s=5$ and $t=6$.

2. Show that $K L P Q$ is a parallelogram for $m=14$ and $n=12.5$.

SEE EXAMPLE 2 Determine if each quadrilateral must be a parallelogram. Justify your answer.

3.

4.

5.

SEE EXAMPLE 3 Show that the quadrilateral with the given vertices is a parallelogram.
6. $W(-5,-2), X(-3,3), Y(3,5), Z(1,0)$
7. $R(-1,-5), S(-2,-1), T(4,-1), U(5,-5)$
8. Navigation A parallel rule can be used to plot a course on a navigation chart. The tool is made of two rulers connected at hinges to two congruent crossbars $\overline{A D}$ and $\overline{B C}$. You place the edge of one ruler on your desired course and then move the second ruler over the compass rose on the chart to read the bearing for your course. If $\overline{A D} \| \overline{B C}$, why is $\overline{A B}$ always parallel to $\overline{C D}$?

PRACTICE AND PROBLEM SOLVING

Ondependent Practice	
For Exercises	See Example
$9-10$	1
$11-13$	2
$14-15$	3
16	4

my.hrw.com

Online Extra Practice
9. Show that $B C G H$ is a parallelogram for $x=3.2$ and $y=7$.

10. Show that $T U V W$ is a parallelogram for for $a=19.5$ and $b=22$.

Determine if each quadrilateral must be a parallelogram. Justify your answer.
11.

12.

13.

Show that the quadrilateral with the given vertices is a parallelogram.
14. $J(-1,0), K(-3,7), L(2,6), M(4,-1)$
15. $P(-8,-4), Q(-5,1), R(1,-5), S(-2,-10)$
16. Design The toolbox has cantilever trays that pull away from the box so that you can reach the items beneath them. Two congruent brackets connect each tray to the box. Given that $A D=B C$, how do the brackets $\overline{A B}$ and $\overline{C D}$ keep the tray horizontal?

Determine if each quadrilateral must be a parallelogram. Justify your answer.
17.

18.

19.

H.OT: Algebra Find the values of a and b that would make the quadrilateral a parallelogram.
20.

22.

21.

23.

24. Critical Thinking Draw a quadrilateral that has congruent diagonals but is not a parallelogram. What can you conclude about using congruent diagonals as a condition for a parallelogram?
25. Social Studies The angles at the corners of the flag of the Republic of the Congo are right angles. The red and green triangles are congruent isosceles right triangles. Why is the shape of the yellow stripe a parallelogram?

26. Complete the two-column proof of Theorem 25-2-2 by filling in the blanks.
Given: $\begin{aligned} \overline{A B} & \cong \overline{C D}, \\ \overline{B C} & \cong \overline{D A}\end{aligned}$
Prove: $A B C D$ is a parallelogram.
Proof:

Statements	Reasons		
1. $\overline{A B} \cong \overline{C D}, \overline{B C} \cong \overline{D A}$	1. Given		
2. $\overline{B D} \cong \overline{B D}$	2. a. ? ?		
3. $\triangle D A B \cong$ b. \quad ?	3. c. ? ?		
4. $\angle 1 \cong$ d. $\frac{\text { ? }}{} \quad \angle 4 \cong$ e. ? ?	4. CPCTC		
5. $\overline{A B}\\|\overline{C D}, \overline{B C}\\| \overline{D A}$	5. f. ? ?		
6. $A B C D$ is a parallelogram.	6. g. ? ?		

27. Complete the paragraph proof of Theorem 25-2-4 by filling in the blanks.
Given: $\angle P$ is supplementary to $\angle Q$.
$\angle P$ is supplementary to $\angle S$.
Prove: $P Q R S$ is a parallelogram.

Measurement

Ancient balance scales had one beam that moved on a single hinge. The stress on the hinge often made the scale imprecise.

Proof:

It is given that $\angle P$ is supplementary to a. \qquad and \mathbf{b}. \qquad $?$.
By the Converse of the Same-Side Interior Angles Theorem, $\overline{Q R} \|$ c. _ ? and $\overline{P Q} \|$ d. _ . . So $P Q R S$ is a parallelogram by the definition of \mathbf{e}. \qquad .
Measurement In the eighteenth century, Gilles Personne de Roberval designed a scale with two beams and two hinges. In $\square A B C D$, E is the midpoint of $\overline{A B}$, and F is the midpoint of $\overline{C D}$. Write a paragraph proof that $A E F D$ and $E B C F$ are parallelograms.

Prove each theorem.

29. Theorem 25-2-3

Given: $\angle E \cong \angle G, \angle F \cong \angle H$
Prove: $E F G H$ is a parallelogram.

Plan: Show that the sum of the interior angles of $E F G H$ is 360°. Then apply properties of equality to show that $\mathrm{m} \angle E+\mathrm{m} \angle F=180^{\circ}$ and $\mathrm{m} \angle E+\mathrm{m} \angle H=180^{\circ}$. Then you can conclude that $\overline{E F} \| \overline{G H}$ and $\overline{F G} \| \overline{H E}$.
30. Theorem 25-2-5

Given: $\overline{J L}$ and $\overline{K M}$ bisect each other.
Prove: $J K L M$ is a parallelogram.
Plan: Show that $\triangle J N K \cong \triangle L N M$ and $\triangle K N L \cong \triangle M N J$. Then use the fact that
 the corresponding angles are congruent to show $\overline{J K} \| \overline{L M}$ and $\overline{K L} \| \overline{M J}$.
H.O.T. 31. Prove that the figure formed by two midsegments of a triangle and their corresponding bases is a parallelogram.
32. Write About lt Use the theorems about properties of parallelograms to write three biconditional statements about parallelograms.
H.O.T. 33. Construction Explain how you can construct a parallelogram based on the conditions of Theorem 25-2-1. Use your method to construct a parallelogram.

Real-World
Connections
34. A geologist made the following observations while examining this amethyst crystal. Tell whether each set of observations allows the geologist to conclude that $P Q R S$ is a parallelogram. If so, explain why.
a. $\overline{P Q} \cong \overline{S R}$, and $\overline{P S} \| \overline{Q R}$.
b. $\angle S$ and $\angle R$ are supplementary, and $\overline{P S} \cong \overline{Q R}$.
c. $\angle S \cong \angle Q$, and $\overline{P Q} \| \overline{S R}$.

TEST PREP

35. What additional information would allow you to conclude that $W X Y Z$ is a parallelogram?
(A) $\overline{X Y} \cong \overline{Z W}$
(C) $\overline{W Y} \cong \overline{W Z}$
(B) $\overline{W X} \cong \overline{Y Z}$
(D) $\angle X W Y \cong \angle Z Y W$

36. Which could be the coordinates of the fourth vertex of $\square A B C D$ with $A(-1,-1)$, $B(1,3)$, and $C(6,1)$?
(F) $D(8,5)$
(G) $D(4,-3)$
(H) $D(13,3)$
(J) $D(3,7)$
37. Short Response The vertices of quadrilateral $R S T V$ are $R(-5,0), S(-1,3)$, $T(5,1)$, and $V(2,-2)$. Is RSTV a parallelogram? Justify your answer.

CHALLENGE AND EXTEND

38. Write About It As the upper platform of the movable staircase is raised and lowered, the height of each step changes. How does the upper platform remain parallel to the ground?
39. Multi-Step The diagonals of a parallelogram intersect at $(-2,1.5)$. Two vertices are located at $(-7,2)$ and (2, 6.5). Find the coordinates
 of the other two vertices.
H.O.T. 40. Given: D is the midpoint of $\overline{A C}$, and E is the midpoint of $\overline{B C}$. Prove: $\overline{D E} \| \overline{A B}, D E=\frac{1}{2} A B$
(Hint: Extend $\overline{D E}$ to form $\overline{D F}$ so that $\overline{E F} \cong \overline{D E}$. Then show that $D F B A$ is a parallelogram.)

FOCUS ON MATHEMATICAL PRACTICES

H.O.T.
41. Proof A precision ice skating team with 10 members formed the figure shown. The skaters positioned themselves along four lines, and the space between each pair of adjacent skaters was 3 feet. Prove that the skaters formed a parallelogram.
H.O.T. 42. Problem Solving The figure shows a parallelogram.
a. Find the coordinates of the fourth vertex.
b. Find the midpoints of the sides of the parallelogram.
c. Show that the quadrilateral formed by connecting the midpoints of adjacent sides is also a parallelogram.

25-3

Properties of Special Parallelograms

(2)
Essential Question: What are the geometric properties of rectangles, rhombuses, and squares?

Objectives

Prove and apply properties of rectangles, rhombuses, and squares.
Use properties of rectangles, rhombuses, and squares to solve problems.

Vocabulary

 rectangle rhombus square
Who uses this?

Artists who work with stained glass can use properties of rectangles to cut materials to the correct sizes.

A second type of special quadrilateral is a rectangle. A rectangle is a quadrilateral with four right angles.

Rectangle $A B C D$

You will prove Theorems 25-3-1 and 25-3-2 in Exercises 38 and 35.

Since a rectangle is a parallelogram by Theorem 25-3-1, a rectangle "inherits" all the properties of parallelograms.

common CORE GPS
 EXAMPLE MCC9-12.G.MG. 1

1 Craft Application
An artist connects stained glass pieces with lead strips. In this rectangular window, the strips are cut so that $F G=24 \mathrm{in}$. and $F H=34$ in. Find $J G$.

$\overline{E G} \cong \overline{F H}$	
Rect. \rightarrow diags. \cong	
$E G=F H=34$	
Def. of \cong segs.	
$J G=\frac{1}{2} E G$	$\square \rightarrow$ diags. bisect
$J G=\frac{1}{2}(34)=17$ in.	
each other	
Substitute and simplify.	

IT OUT!
Carpentry The rectangular gate has diagonal braces. Find each length.
1a. HJ
1b. $H K$

A rhombus is another special quadrilateral. A rhombus is a quadrilateral with four congruent sides.

Theorems Properties of Rhombuses

THEOREM	HYPOTHESIS	CONCLUSION
25-3-3 If a quadrilateral is a rhombus, then it is a parallelogram. (rhombus $\rightarrow \square$)		$A B C D$ is a parallelogram.
25-3-4 If a parallelogram is a rhombus, then its diagonals are perpendicular. (rhombus \rightarrow diags. \perp)		$\overline{A C} \perp \overline{B D}$
25-3-5 If a parallelogram is a rhombus, then each diagonal bisects a pair of opposite angles. (rhombus \rightarrow each diag. bisects opp. $\boxed{\boxed{s}}$)		$\begin{aligned} & \angle 1 \cong \angle 2 \\ & \angle 3 \cong \angle 4 \\ & \angle 5 \cong \angle 6 \\ & \angle 7 \cong \angle 8 \end{aligned}$

You will prove Theorems 25-3-3 and 25-3-4 in Exercises 34 and 37.

Theorem 25-3-5

Given: JKLM is a rhombus.
Prove: $\overline{L L}$ bisects $\angle K J M$ and $\angle K L M$.
$\overline{K M}$ bisects $\angle J K L$ and $\angle J M L$.
Proof:

Since $J K L M$ is a rhombus, $\overline{J K} \cong \overline{J M}$, and $\overline{K L} \cong \overline{M L}$ by the definition of a rhombus. By the Reflexive Property of Congruence, $\overline{J L} \cong \overline{J L}$. Thus $\triangle J K L \cong \triangle J M L$ by SSS. Then $\angle 1 \cong \angle 2$, and $\angle 3 \cong \angle 4$ by CPCTC. So $\overline{J L}$ bisects $\angle K J M$ and $\angle K L M$ by the definition of an angle bisector. By similar reasoning, $\overline{K M}$ bisects $\angle J K L$ and $\angle J M L$.

Like a rectangle, a rhombus is a parallelogram. So you can apply the properties of parallelograms to rhombuses.

COMMON
 CORE GPS
 EXAMPLE MCC9-12.A.CED. 1

my.hrw.com

Online Video Tutor

2 Using Properties of Rhombuses to Find Measures
RSTV is a rhombus. Find each measure.
A
$V T$
$S T=S R$
$4 x+7=9 x-11$
$18=5 x$
Def. of rhombus
Substitute the given values.
Subtract 4x from both sides
 and add 11 to both sides.
$3.6=x \quad$ Divide both sides by 5.
$V T=S T \quad$ Def. of rhombus
$V T=4 x+7 \quad$ Substitute $4 x+7$ for ST.
$V T=4(3.6)+7=21.4 \quad$ Substitute 3.6 for x and simplify.
$R S T V$ is a rhombus. Find each measure.
B

```
m}\angleWS
```

$$
\begin{array}{rlrl}
\mathrm{m} \angle S W T & =90^{\circ} & & \text { Rhombus } \rightarrow \text { diags. } \perp \\
2 y+10 & =90 & & \text { Substitute } 2 y+10 \text { for } \mathrm{m} \angle S W T . \\
y & =40 & & \text { Subtract } 10 \text { from both sides } \\
& & \text { and divide both sides by } 2 .
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{m} \angle W S R=\mathrm{m} \angle T S W & \\
\text { Rhombus } \rightarrow \text { each diag. bisects opp. } \angle \mathrm{s} \\
\mathrm{~m} \angle W S R=(y+2)^{\circ} & \\
\mathrm{m} \angle W S R=(40+2)^{\circ}=42^{\circ} & \\
\text { Substitute } y+2 \text { for } \mathrm{m} \angle T S W .
\end{array}
$$

CHECK IT OUT!

$C D F G$ is a rhombus. Find each measure.
2a. $C D$
2b. $\mathrm{m} \angle G C H$ if $\mathrm{m} \angle G C D=(b+3)^{\circ}$ and $\mathrm{m} \angle C D F=(6 b-40)^{\circ}$

Rectangles, rhombuses, and squares are sometimes referred to as special parallelograms.

A square is a quadrilateral with four right angles and four congruent sides. In the exercises, you will show that a square is a parallelogram, a rectangle, and a rhombus. So a square has the properties of all three.

Square $A B C D$

common core grs
 EXAMPLE MCC9-12.G.GPE. 4

my.hrw.com

Online Video Tutor

3 Verifying Properties of Squares

Show that the diagonals of square $A B C D$ are congruent perpendicular bisectors of each other.
Step 1 Show that $\overline{A C}$ and $\overline{B D}$ are congruent.

$$
\begin{aligned}
& A C=\sqrt{[2-(-1)]^{2}+(7-0)^{2}}=\sqrt{58} \\
& B D=\sqrt{[4-(-3)]^{2}+(2-5)^{2}}=\sqrt{58}
\end{aligned}
$$

Since $A C=B D, \overline{A C} \cong \overline{B D}$.
Step 2 Show that $\overline{A C}$ and $\overline{B D}$ are perpendicular.
slope of $\overline{A C}=\frac{7-0}{2-(-1)}=\frac{7}{3}$
slope of $\overline{B D}=\frac{2-5}{4-(-3)}=\frac{-3}{7}=-\frac{3}{7}$
Since $\left(\frac{7}{3}\right)\left(-\frac{3}{7}\right)=-1, \overline{A C} \perp \overline{B D}$.
Step 3 Show that $\overline{A C}$ and $\overline{B D}$ bisect each other.
mdpt. of $\overline{A C}:\left(\frac{-1+2}{2}, \frac{0+7}{2}\right)=\left(\frac{1}{2}, \frac{7}{2}\right)$
mdpt. of $\overline{B D}:\left(\frac{-3+4}{2}, \frac{5+2}{2}\right)=\left(\frac{1}{2}, \frac{7}{2}\right)$
Since $\overline{A C}$ and $\overline{B D}$ have the same midpoint, they bisect each other. The diagonals are congruent perpendicular bisectors of each other.
3. The vertices of square $S T V W$ are $S(-5,-4), T(0,2)$, $V(6,-3)$, and $W(1,-9)$. Show that the diagonals of square STVW are congruent perpendicular bisectors of each other.

Student to Student

Special Parallelograms

Taylor Gallinghouse Central High School

To remember the properties of rectangles, rhombuses, and squares, I start with a square, which has all the properties of the others.

To get a rectangle that is not a square, I stretch the square in one direction. Its diagonals are still congruent, but they are no longer perpendicular.

To get a rhombus that is not a square, I go back to the square and slide the top in one direction. Its diagonals are still perpendicular and bisect the opposite angles, but they aren't congruent.

EXAMPLE MCC9-12.G.C0.11

my.hrw.com

Online Video Tutor

4 Using Properties of Special Parallelograms in Proofs
Given: $E F G H$ is a rectangle. J is the midpoint of $\overline{E H}$. Prove: $\triangle F J G$ is isosceles.
Proof:

Statements	Reasons
1. $E F G H$ is a rectangle.	1. Given
J is the midpoint of $\overline{E H}$.	
2. $\angle E$ and $\angle H$ are right angles.	2. Def. of rect.
3. $\angle E \cong \angle H$	3. Rt. $\angle \cong$ Thm.
4. $E F G H$ is a parallelogram.	4. Rect. $\rightarrow \square$
5. $\overline{E F} \cong \overline{H G}$	5. $\square \rightarrow$ opp. sides \cong
6. $\overline{E J \cong \overline{H J}}$	6. Def. of mdpt.
7. $\triangle F J E \cong \triangle G J H$	7. SAS Steps $3,5,6$
8. $\overline{F J} \cong \overline{G J}$	8. CPCTC
9. $\triangle F J G$ is isosceles.	9. Def. of isosc. \triangle

4. Given: $P Q T S$ is a rhombus with diagonal $\overline{P R}$. Prove: $\overline{R Q} \cong \overline{R S}$

THINK AND DISCUSS

1. Which theorem means "The diagonals of a rectangle are congruent"? Why do you think the theorem is written as a conditional?
2. What properties of a rhombus are the same as the properties of all parallelograms? What special properties does a rhombus have?
3. GET ORGANIZED Copy and complete the graphic organizer. Write the missing terms in the three unlabeled sections. Then write a definition of each term.

GUIDED PRACTICE

1. Vocabulary What is another name for an equilateral quadrilateral? an equiangular quadrilateral? a regular quadrilateral?

SEE EXAMPLE 1 Engineering The braces of the bridge support lie along the diagonals of rectangle $P Q R S$. $R S=160 \mathrm{ft}$, and $Q S=380 \mathrm{ft}$. Find each length.
2. $T Q$
3. $P Q$
4. $S T$
5. $P R$

SEE EXAMPLE 2
$A B C D$ is a rhombus. Find each measure.
6. $A B$
7. $\mathrm{m} \angle A B C$

SEE EXAMPLE 3
8. Multi-Step The vertices of square JKLM are $J(-3,-5), K(-4,1), L(2,2)$, and $M(3,-4)$.
 Show that the diagonals of square JKLM are congruent perpendicular bisectors of each other.

SEE EXAMPLE 4
9. Given: $R E C T$ is a rectangle. $\overline{R X} \cong \overline{T Y}$ Prove: $\triangle R E Y \cong \triangle T C X$

PRACTICE AND PROBLEM SOLVING

Independent Practice

For Exercises	See Example
$10-13$	1
$14-15$	2
16	3
17	4

Carpentry A carpenter measures the diagonals of a piece of wood. In rectangle $J K L M, J M=25 \mathrm{in}$., and $J P=14 \frac{1}{2} \mathrm{in}$. Find each length.
10. $J L$
11. $K L$
12. $K M$
13. $M P$

$V W X Y$ is a rhombus. Find each measure.
14. $V W$
15. $\mathrm{m} \angle V W X$ and $\mathrm{m} \angle W Y X$ if $\mathrm{m} \angle W V Y=(4 b+10)^{\circ}$ and $\mathrm{m} \angle X Z W=(10 b-5)^{\circ}$

H.OT. 16. Multi-Step The vertices of square $P Q R S$ are $P(-4,0), Q(4,3), R(7,-5)$, and $S(-1,-8)$. Show that the diagonals of square $P Q R S$ are congruent perpendicular bisectors of each other.
17. Given: $R H M B$ is a rhombus with diagonal $\overline{H B}$. Prove: $\angle H M X \cong \angle H R X$

Find the measures of the numbered angles in each rectangle.
18.

19.

20.

Online Extra Practice

Find the measures of the numbered angles in each rhombus.
21.

22.

23.

Tell whether each statement is sometimes, always, or never true.
(Hint: Refer to your graphic organizer for this lesson.)
24. A rectangle is a parallelogram.
25. A rhombus is a square.
26. A parallelogram is a rhombus.
28. A square is a rhombus.
27. A rhombus is a rectangle.
30. A square is a rectangle.
29. A rectangle is a quadrilateral.
31. A rectangle is a square.

HOTT. 32. Critical Thinking A triangle is equilateral if and only if the triangle is equiangular. Can you make a similar statement about a quadrilateral? Explain your answer.
33. History There are five shapes of clay tiles in this tile mosaic from the ruins of Pompeii.
a. Make a sketch of each shape of tile and tell whether the shape is a polygon.
b. Name each polygon by its number of sides. Does each shape appear to be regular or irregular?
c. Do any of the shapes appear to be special parallelograms? If so, identify them by name.
d. Find the measure of each interior angle of the center polygon.

H.O.T 34. ///ERROR ANALYSIS/// Find and correct the error in this proof of Theorem 25-3-3.
Given: JKLM is a rhombus.
Prove: $J K L M$ is a parallelogram.

Proof:
It is given that $J K L M$ is a rhombus. So by the definition of a rhombus, $\overline{J K} \cong \overline{L M}$, and $\overline{K L} \cong \overline{M J}$. If a quadrilateral is a parallelogram, then its opposite sides are congruent. So JKLM is a parallelogram.
35. Complete the two-column proof of Theorem 25-3-2 by filling in the blanks.

Given: $E F G H$ is a rectangle.
Prove: $\overline{F H} \cong \overline{G E}$
Proof:

Statements	Reasons
1. $E F G H$ is a rectangle.	1. Given
2. $E F G H$ is a parallelogram.	2. a. ?
3. $\overline{E F \cong \text { b. ? }}$	3. $\square \rightarrow \mathrm{opp}$. sides \cong
4. $\overline{E H} \cong \overline{E H}$	4. c. ?
5. $\angle F E H$ and $\angle G H E$ are right angles.	5. d. ? ?
6. $\angle F E H \cong$ e. ?	6. R. $\angle \cong$ Thm.
7. $\triangle F E H \cong \triangle G H E$	7. f. ? ?
8. $\overline{F H \cong \overline{G E}}$	8. g. ? ?

Real-World Connections
36. The organizers of a fair plan to fence off a plot of land given by the coordinates $A(2,4), B(4,2), C(-1,-3)$, and $D(-3,-1)$.
a. Find the slope of each side of quadrilateral $A B C D$.
b. What type of quadrilateral is formed by the fences? Justify your answer.
c. The organizers plan to build a straight path connecting A and C and another path connecting B and D. Explain why these two paths will have the same length.
37. Use this plan to write a proof of Theorem 25-3-4.

Given: $V W X Y$ is a rhombus.
Prove: $\overline{V X} \perp \overline{W Y}$

Plan: Use the definition of a rhombus and the properties of parallelograms to show that $\triangle W Z X \cong \triangle Y Z X$.
Then use CPCTC to show that $\angle W Z X$ and $\angle Y Z X$ are right angles.
38. Write a paragraph proof of Theorem 25-3-1.

Given: $A B C D$ is a rectangle.
Prove: $A B C D$ is a parallelogram.

39. Write a two-column proof.

Given: $A B C D$ is a rhombus. E, F, G, and H are the midpoints of the sides.
Prove: $E F G H$ is a parallelogram.

H.OT. Multi-Step Find the perimeter and area of each figure. Round to the nearest hundredth, if necessary.
40.

41.

42.

H.OT. 43. Write About It Explain why each of these conditional statements is true.
a. If a quadrilateral is a square, then it is a parallelogram.
b. If a quadrilateral is a square, then it is a rectangle.
c. If a quadrilateral is a square, then it is a rhombus.
44. Write About lt List the properties that a square "inherits" because it is (1) a parallelogram, (2) a rectangle, and (3) a rhombus.

TEST PREP

45. Which expression represents the measure of $\angle J$ in rhombus JKLM?
(A) x°
(C) $(180-x)^{\circ}$
(B) $2 x^{\circ}$
(D) $(180-2 x)^{\circ}$

46. Short Response The diagonals of rectangle $Q R S T$ intersect at point P. If $Q R=1.8 \mathrm{~cm}, Q P=1.5 \mathrm{~cm}$, and $Q T=2.4 \mathrm{~cm}$, find the perimeter of $\triangle R S T$. Explain how you found your answer.
47. Which statement is NOT true of a rectangle?
(F) Both pairs of opposite sides are congruent and parallel.
(G) Both pairs of opposite angles are congruent and supplementary.
(H) All pairs of consecutive sides are congruent and perpendicular.
(J) All pairs of consecutive angles are congruent and supplementary.

CHALLENGE AND EXTEND

48. Algebra Find the value of x in the rhombus.
H.OT. 49. Prove that the segment joining the midpoints of two consecutive sides of a rhombus is perpendicular
 to one diagonal and parallel to the other.
49. Extend the definition of a triangle midsegment to write a definition for the midsegment of a rectangle. Prove that a midsegment of a rectangle divides the rectangle into two congruent rectangles.
50. The figure is formed by joining eleven congruent squares. How many rectangles are in the figure?

FOCUS ON MATHEMATICAL PRACTICES

H.O.T. 52. Reasoning Explain the relationship between the two labeled angles in the rhombus shown and their relationship to $\angle B A D$, then find the value of x and $\mathrm{m} \angle B A D$.

H.OT: 53. Problem Solving $A B C D$ is a rhombus.

Find x and $\mathrm{m} \angle D A C$. Show your work.

Draw $\overline{P S}$. Set the compass to the length of $\overline{P S}$. Place the compass point at P and draw an arc above $\overline{P S}$. Label a point Q on the arc.
(2)

Place the compass point at Q and draw an arc to the right of Q.
(3)

Place the compass point at S and draw an arc that intersects the arc drawn from Q. Label the point of intersection R.
4

Draw $\overline{P Q}, \overline{Q R}$, and $\overline{R S}$.

In this task, you will use geometry software to predict the conditions that are sufficient to prove that a parallelogram is a rectangle, rhombus, or square.

Use with Conditions for Special Parallelograms

Predict Conditions for Special Parallelograms

> | $\begin{array}{l}\text { MATHEMATICAL } \\ \text { PRACTICES }\end{array}$ | $\begin{array}{l}\text { Use appropriate } \\ \text { tools strategically. }\end{array}$ |
| :--- | :--- |

MCC9-12.G.cO.11 Prove theorems about parallelograms.

Activity 1

(1) Construct $\overline{A B}$ and $\overline{A D}$ with a common endpoint A. Construct a line through D parallel to $\overline{A B}$. Construct a line through B parallel to $\overline{A D}$.
(2) Construct point C at the intersection of the two lines. Hide the lines and construct $\overline{B C}$ and $\overline{C D}$ to complete the parallelogram.
(3) Measure the four sides and angles of the parallelogram.
(4) Move A so that $\mathrm{m} \angle A B C=90^{\circ}$. What type of special parallelogram results?
(5) Move A so that $\mathrm{m} \angle A B C \neq 90^{\circ}$.

(6) Construct $\overline{A C}$ and $\overline{B D}$ and measure their lengths. Move A so that $A C=B D$. What type of special parallelogram results?

Try This

1. How does the method of constructing $A B C D$ in Steps 1 and 2 guarantee that the quadrilateral is a parallelogram?
2. Make a Conjecture What are two conditions for a rectangle? Write your conjectures as conditional statements.

Activity 2

1) Use the parallelogram you constructed in Activity 1 . Move A so that $A B=B C$.
What type of special parallelogram results?
(2) Move A so that $A B \neq B C$.
(3) Label the intersection of the diagonals as E. Measure $\angle A E B$.

(4) Move A so that $\mathrm{m} \angle A E B=90^{\circ}$. What type of special parallelogram results?
(5) Move A so that $\mathrm{m} \angle A E B \neq 90^{\circ}$.

2) Measure $\angle A B D$ and $\angle C B D$. Move A so that $\mathrm{m} \angle A B D=\mathrm{m} \angle C B D$. What type of special parallelogram results?

Iry This

3. Make a Conjecture What are three conditions for a rhombus? Write your conjectures as conditional statements.
4. Make a Conjecture A square is both a rectangle and a rhombus. What conditions do you think must hold for a parallelogram to be a square?

25-4

Conditions for Special Parallelograms

Essential Question: What information about a parallelogram allows you to conclude it is a rectangle, rhombus, or square?

Objective

Prove that a given quadrilateral is a rectangle, rhombus, or square.

Animated Math

Who uses this?
Building contractors and carpenters can use the conditions for rectangles to make sure the frame for a house has the correct shape.

When you are given a parallelogram with certain properties, you can use the theorems below to determine whether the parallelogram is a rectangle.

You will prove Theorems 25-4-1 and 25-4-2 in Exercises 31 and 28.

EXAMPLE MCC9-12.G.MG. 1

Online Video Tutor

1

Carpentry Application

A contractor built a wood frame for the side of a house so that $\overline{X Y} \cong \overline{W Z}$ and $\overline{X W} \cong \overline{Y Z}$. Using a tape measure, the contractor found that $X Z=W Y$. Why must the frame be a rectangle?
Both pairs of opposite sides of $W X Y Z$ are congruent, so $W X Y Z$ is a parallelogram. Since $X Z=W Y$, the diagonals of $\square W X Y Z$ are congruent. Therefore the frame is a rectangle by Theorem 25-4-2.

1. A carpenter's square can be used to test that an angle is a right angle. How could the contractor use a carpenter's square to check that the frame is a rectangle?

Below are some conditions you can use to determine whether a parallelogram is a rhombus.

Caution!

In order to apply Theorems 25-5-1 through 25-5-5, the quadrilateral must be a parallelogram.

Theorems
Conditions for Rhombuses
25-4-3

25-4-3 If one pair of consecutive sides of a parallelogram are congruent, then the parallelogram is a rhombus.
(\square with one pair cons. sides $\cong \rightarrow$ rhombus)

EXAMPLE

25-4-4 If the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus.
(\square with diags. $\perp \rightarrow$ rhombus)

25-4-5 If one diagonal of a parallelogram bisects a pair of opposite angles, then the parallelogram is a rhombus.
(\square with diag. bisecting opp. $\stackrel{\leftrightarrow}{ } \rightarrow$ rhombus)

You will prove Theorems 25-4-3 and 25-4-4 in Exercises 32 and 30.

PROOF

Theorem 25-4-5

Given: $J K L M$ is a parallelogram.
$\overline{J L}$ bisects $\angle K J M$ and $\angle K L M$.
Prove: $J K L M$ is a rhombus.
Proof:

Statements	Reasons
1. $J K L M$ is a parallelogram.	1. Given
$\overline{J L}$ bisects $\angle K J M$ and $\angle K L M$.	2. Def. of \angle bisector
2. $\angle 1 \cong \angle 2, \angle 3 \cong \angle 4$	3. Reflex. Prop. of \cong
3. $\overline{J L \cong \overline{J L}}$	4. ASA Steps 2,3
4. $\triangle J K L \cong \triangle J M L$	5. CPCTC
5. $\overline{J K} \cong \overline{J M}$	6. \square with one pair cons.
6. $J K L M$ is a rhombus.	sides $\cong \rightarrow$ rhombus

To prove that a given quadrilateral is a square, it is sufficient to show that the figure is both a rectangle and a rhombus. You will explain why this is true in Exercise 43.
my.hrw.com

Online Video Tutor

Remember!

You can also prove that a given quadrilateral is a rectangle, rhombus, or square by using the definitions of the special quadrilaterals.

Applying Conditions for Special Parallelograms
Determine if the conclusion is valid. If not, tell what additional information is needed to make it valid.

Given: $\overline{A B} \cong \overline{C D}, \overline{B C} \cong \overline{A D}$, $\overline{A D} \perp \overline{D C}, \overline{A C} \perp \overline{B D}$
Conclusion: $A B C D$ is a square.

Step 1 Determine if $A B C D$ is a parallelogram.
$\overline{A B} \cong \overline{C D}, \overline{B C} \cong \overline{A D} \quad$ Given
$A B C D$ is a parallelogram. \quad Quad. with opp. sides $\cong \rightarrow \square$
Step 2 Determine if $A B C D$ is a rectangle.
$\overline{A D} \perp \overline{D C}$, so $\angle A D C$ is a right angle.
$A B C D$ is a rectangle.
Def. of \perp
\square with one $r t$. $\angle \rightarrow r e c t$.
Step 3 Determine if $A B C D$ is a rhombus.
$\overline{A C} \perp \overline{B D}$
Given
$A B C D$ is a rhombus. \square with diags. $\perp \rightarrow$ rhombus
Step 4 Determine if $A B C D$ is a square.
Since $A B C D$ is a rectangle and a rhombus, it has four right angles and four congruent sides. So $A B C D$ is a square by definition. The conclusion is valid.

B Given: $\overline{A B} \cong \overline{B C}$
Conclusion: $A B C D$ is a rhombus.
The conclusion is not valid. By Theorem 25-4-3, if one pair of consecutive sides of a parallelogram are congruent, then the parallelogram is a rhombus. To apply this theorem, you must first know that $A B C D$ is a parallelogram.
2. Determine if the conclusion is valid. If not, tell what additional information is needed to make it valid.
Given: $\angle A B C$ is a right angle.
Conclusion: $A B C D$ is a rectangle.

common
 CORE GPS

EXAMPLE MCC9-12.G.GPE. 5

my.hrw.com

Online Video Tutor

Identifying Special Parallelograms in the Coordinate Plane

Use the diagonals to determine whether a parallelogram with the given vertices is a rectangle, rhombus, or square. Give all the names that apply.
A
$A(0,2), B(3,6), C(8,6), D(5,2)$
Step 1 Graph $\square A B C D$.
Step 2 Determine if $A B C D$ is a rectangle.

$$
\begin{aligned}
A C & =\sqrt{(8-0)^{2}+(6-2)^{2}} \\
& =\sqrt{80}=4 \sqrt{5} \\
B D & =\sqrt{(5-3)^{2}+(2-6)^{2}} \\
& =\sqrt{20}=2 \sqrt{5}
\end{aligned}
$$

Since $4 \sqrt{5} \neq 2 \sqrt{5}, A B C D$ is not a rectangle.
Thus $A B C D$ is not a square.

Step 3 Determine if $A B C D$ is a rhombus.
slope of $\overline{A C}=\frac{6-2}{8-0}=\frac{1}{2} \quad$ slope of $\overline{B D}=\frac{2-6}{5-3}=-2$
Since $\left(\frac{1}{2}\right)(-2)=-1, \overline{A C} \perp \overline{B D} . A B C D$ is a rhombus.
B $E(-4,-1), F(-3,2), G(3,0), H(2,-3)$
Step 1 Graph $\square E F G H$.
Step 2 Determine if $E F G H$ is a rectangle.

$$
\begin{aligned}
E G & =\sqrt{[3-(-4)]^{2}+[0-(-1)]^{2}} \\
& =\sqrt{50}=5 \sqrt{2} \\
F H & =\sqrt{[2-(-3)]^{2}+(-3-2)^{2}} \\
& =\sqrt{50}=5 \sqrt{2}
\end{aligned}
$$

Since $5 \sqrt{2}=5 \sqrt{2}$, the diagonals are congruent.
$E F G H$ is a rectangle.
Step 3 Determine if $E F G H$ is a rhombus.
slope of $\overline{E G}=\frac{0-(-1)}{3-(-4)}=\frac{1}{7}$
slope of $\overline{F H}=\frac{-3-2}{2-(-3)}=\frac{-5}{5}=-1$
Since $\left(\frac{1}{7}\right)(-1) \neq-1, \overline{E G} \not \subset \overline{F H}$.
So $E F G H$ is a not a rhombus and cannot be a square.

Use the diagonals to determine whether a parallelogram with the given vertices is a rectangle, rhombus, or square. Give all the names that apply.
3a. $K(-5,-1), L(-2,4), M(3,1), N(0,-4)$
3b. $P(-4,6), Q(2,5), R(3,-1), S(-3,0)$

THINK AND DISCUSS

1. What special parallelogram is formed when the diagonals of a parallelogram are congruent? when the diagonals are perpendicular? when the diagonals are both congruent and perpendicular?
2. Draw a figure that shows why this statement is not necessarily true: If one angle of a quadrilateral is a right angle, then the quadrilateral is a rectangle.
3. A rectangle can also be defined as a parallelogram with a right angle. Explain why this definition is accurate.
4. GET ORGANIZED Copy and complete the graphic organizer. In each box, write at least three conditions for the given parallelogram.

GUIDED PRACTICE

SEE EXAMPLE 1

1. Gardening A city garden club is planting a square garden. They drive pegs into the ground at each corner and tie strings between each pair. The pegs are spaced so that $\overline{W X} \cong \overline{X Y} \cong \overline{Y Z} \cong \overline{Z W}$. How can the garden club use the diagonal strings to verify that the garden is a square?

SEE EXAMPLE 2

SEE EXAMPLE 3
Multi-Step Use the diagonals to determine whether a parallelogram with the given vertices is a rectangle, rhombus, or square. Give all the names that apply.
4. $P(-5,2), Q(4,5), R(6,-1), S(-3,-4)$
5. $W(-6,0), X(1,4), Y(2,-4), Z(-5,-8)$

PRACTICE AND PROBLEM SOLVING

6. Crafts A framer uses a clamp to hold together the pieces of a picture frame. The pieces are cut so that $\overline{P Q} \cong \overline{R S}$ and $\overline{Q R} \cong \overline{S P}$. The clamp is adjusted so that $P Z, Q Z, R Z$, and $S Z$ are all equal. Why must the frame be a rectangle?

Determine if the conclusion is valid. If not, tell what additional information is needed to make it valid.
7. Given: $\overline{E G}$ and $\overline{F H}$ bisect each other. $\overline{E G} \perp \overline{F H}$ Conclusion: $E F G H$ is a rhombus.
8. Given: $\overline{F H}$ bisects $\angle E F G$ and $\angle E H G$.

my.hrw.com

Online Extra Practice Conclusion: $E F G H$ is a rhombus.

Multi-Step Use the diagonals to determine whether a parallelogram with the given vertices is a rectangle, rhombus, or square. Give all the names that apply.
9. $A(-10,4), B(-2,10), C(4,2), D(-4,-4)$
10. $J(-9,-7), K(-4,-2), L(3,-3), M(-2,-8)$

Tell whether each quadrilateral is a parallelogram, rectangle, rhombus, or square. Give all the names that apply.
11.

12.

13.

Tell whether each quadrilateral is a parallelogram, rectangle, rhombus, or square. Give all the names that apply.
14.

15.

16.

17. ///ERROR ANALYSIS/// In $\square A B C D, \overline{A C} \cong \overline{B D}$. Which conclusion is incorrect? Explain the error.
(A)
$A B C D$ is a rectangle.
(B)
$A B C D$ is a square.

H.O.T. Give one characteristic of the diagonals of each figure that would make the conclusion valid.
18. Conclusion: JKLM is a rhombus.

19. Conclusion: $P Q R S$ is a square.

The coordinates of three vertices of $\square A B C D$ are given. Find the coordinates of D so that the given type of figure is formed.
20. $A(4,-2), B(-5,-2), C(4,4)$; rectangle
21. $A(-5,5), B(0,0), C(7,1)$; rhombus
22. $A(0,2), B(4,-2), C(0,-6)$; square
23. $A(2,1), B(-1,5), C(-5,2)$; square

Find the value of x that makes each parallelogram the given type.
24. rectangle

25. rhombus

26. square

27. Critical Thinking The diagonals of a quadrilateral are perpendicular bisectors of each other. What is the best name for this quadrilateral? Explain your answer.
28. Complete the two-column proof of Theorem 25-4-2 by filling in the blanks.

Given: $E F G H$ is a parallelogram.

$$
\overline{E G} \cong \overline{H F}
$$

Prove: $E F G H$ is a rectangle.

Proof:

Statements	Reasons
1. $E F G H$ is a parallelogram. $\overline{E G} \cong \overline{H F}$ 2. $\overline{E F} \cong \overline{H G}$ 3. b. \qquad ? 4. $\triangle E F H \cong \triangle H G E$ 5. $\angle F E H \cong$ d. ? \qquad 6. $\angle F E H$ and $\angle G H E$ are supplementary. 7. g . \qquad ? 8. $E F G H$ is a rectangle.	1. Given 2. a. \qquad ? 3. Reflex. Prop. of \cong 4. c. ? \qquad 5. e. \qquad 6. f. \qquad 7. $\cong «$ supp. $\rightarrow \mathrm{rt}$. $\stackrel{s}{ }$ 8. h. ?

Real-World Connections
29. A state fair takes place on a plot of land given by the coordinates
$A(-2,3), B(1,2), C(2,-1)$, and $D(-1,0)$.
a. Show that the opposite sides of quadrilateral $A B C D$ are parallel.
b. A straight path connects A and C, and another path connects B and D. Use slopes to prove that these two paths are perpendicular.
c. What can you conclude about $A B C D$? Explain your answer.
30. Complete the paragraph proof of Theorem 25-4-4 by filling in the blanks.
Given: $P Q R S$ is a parallelogram. $\overline{P R} \perp \overline{Q S}$
Prove: $P Q R S$ is a rhombus.

Proof:
It is given that $P Q R S$ is a parallelogram. The diagonals of a parallelogram bisect each other, so $\overline{P T} \cong$ a. \qquad . By the Reflexive Property of Congruence, $\overline{Q T} \cong \mathbf{b}$. \qquad . It is given that $\overline{P R} \perp \overline{Q S}$, so $\angle Q T P$ and $\angle Q T R$ are right angles by the definition of \mathbf{c}. ? . Then $\angle Q T P \cong \angle Q T R$ by the \mathbf{d}. ? So $\triangle Q T P \cong \triangle Q T R$ by e. \qquad ? , and $\overline{Q P} \cong \mathbf{f}$. \qquad , by СРСТС.
By Theorem 25-4-3, if one pair of consecutive sides of a parallelogram are congruent, then the parallelogram is a g. ? . Therefore $P Q R S$ is rhombus.
H.O.T. 31. Write a two-column proof of Theorem 25-4-1.

Given: $A B C D$ is a parallelogram. $\angle A$ is a right angle.
Prove: $A B C D$ is a rectangle.

H.O.T. 32. Write a paragraph proof of Theorem 25-4-3.

Given: $J K L M$ is a parallelogram. $\overline{J K} \cong \overline{K L}$
Prove: JKLM is a rhombus.

H.O.T. 33. Algebra Four lines are represented by the equations below.
$\ell: y=-x+1$
$m: y=-x+7$
$n: y=2 x+1$
$p: y=2 x+7$
a. Graph the four lines in the coordinate plane.
b. Classify the quadrilateral formed by the lines.
c. What if...? Suppose the slopes of lines n and p change to 1 . Reclassify the quadrilateral.
H.OT. 34. Write a two-column proof.

Given: $F H J N$ and $G L M F$ are parallelograms.

$$
\overline{F G} \cong \overline{F N}
$$

Prove: $F G K N$ is a rhombus.

35. Write About It Write a biconditional statement based on the theorems about the diagonals of rectangles. Write a biconditional statement based on the theorems about the diagonals of rhombuses. Can you write a biconditional statement based on the theorems about opposite angles in parallelograms? Explain your answer.

Construction Use the diagonals to construct each figure. Then use the theorems from this lesson to explain why your method works.
36. rectangle
37. rhombus
38. square

TEST PREP

39. In $\square P Q R S, \overline{P R}$ and $\overline{Q S}$ intersect at T. What additional information is needed to conclude that $P Q R S$ is a rectangle?
(A) $\overline{P T} \cong \overline{Q T}$
(C) $\overline{P T} \perp \overline{Q T}$
(B) $\overline{P T} \cong \overline{R T}$
(D) $\overline{P T}$ bisects $\angle Q P S$.

40. Which of the following is the best name for figure $W X Y Z$ with vertices $W(-3,1)$, $X(1,5), Y(8,-2)$, and $Z(4,-6)$?
(F) Parallelogram (G) Rectangle (H) Rhombus (J) Square
41. Extended Response
a. Write and solve an equation to find the value of x.
b. Is JKLM a parallelogram? Explain.
c. Is JKLM a rectangle? Explain.
d. Is JKLM a rhombus? Explain.

CHALLENGE AND EXTEND

42. Given: $\overline{A C} \cong \overline{D F}, \overline{A B} \cong \overline{D E}, \overline{A B} \perp \overline{B C}, \overline{D E} \perp \overline{E F}$, $\overline{B E} \perp \overline{E F}, \overline{B C} \| \overline{E F}$
Prove: $E B C F$ is a rectangle.
43. Critical Thinking Consider the following statement: If a quadrilateral is a rectangle and a rhombus, then it is a square.

a. Explain why the statement is true.
b. If a quadrilateral is a rectangle, is it necessary to show that all four sides are congruent in order to conclude that it is a square? Explain.
c. If a quadrilateral is a rhombus, is it necessary to show that all four angles are right angles in order to conclude that it is a square? Explain.
44. Cars As you turn the crank of a car jack, the platform that supports the car rises. Use the diagonals of the parallelogram to explain whether the jack forms a rectangle, rhombus, or square.

MATHEMATICAL PRACTICES

FOCUS ON MATHEMATICAL PRACTICES

45. Properties Give the most specific name for the parallelogram with the given properties.
a. diagonals are congruent and perpendicular
b. diagonals bisect each other and are congruent
c. diagonals are perpendicular
H.O.T
46. Justify Coco made a skating rink in her back yard. The rink is a quadrilateral $P Q R S$ where $\overline{P Q}$ is parallel to $\overline{R S}, \overline{P Q}$ is congruent to $\overline{R S}$, and $\overline{P R}$ is congruent to $\overline{Q S}$. What type of quadrilateral is her rink? Justify your answer.

Ready to Go On?

25-1 Properties of Parallelograms

A pantograph is used to copy drawings. Its legs form a parallelogram. In $\square J K L M, L M=17 \mathrm{~cm}, K N=13.5 \mathrm{~cm}$, and $\mathrm{m} \angle K J M=102^{\circ}$. Find each measure.

1. $K M$
2. $K J$
3. $M N$
4. $\mathrm{m} \angle J K L$
5. $\mathrm{m} \angle J M L$
6. $\mathrm{m} \angle K L M$
7. Three vertices of $\square A B C D$ are $A(-3,1), B(5,7)$, and $C(6,2)$. Find the coordinates of vertex D.
$W X Y Z$ is a parallelogram.
Find each measure.
8. $W X$
9. $Y Z$
10. $\mathrm{m} \angle X$
11. $\mathrm{m} \angle W$

25-2 Conditions for Parallelograms

12. Show that $R S T V$ is a parallelogram for $x=6$ and $y=4.5$.

13. Show that GHJK is a parallelogram
for $m=12$ and $n=9.5$.

Determine if each quadrilateral must be a parallelogram. Justify your answer.
14.

15.

16.

17. Show that a quadrilateral with vertices $C(-9,4), D(-4,8), E(2,6)$, and $F(-3,2)$ is a parallelogram.

25-3 Properties of Special Parallelograms

The flag of Jamaica is a rectangle with stripes along the diagonals. In rectangle $Q R S T, Q S=80.5$, and $R S=36$. Find each length.
18. $S P$
19. $Q T$
20. $T R$
21. $T P$

GHJK is a rhombus. Find each measure.
22. $H J$
23. $\mathrm{m} \angle H J G$ and $\mathrm{m} \angle G H J$ if $\mathrm{m} \angle J L H=(4 b-6)^{\circ}$ and $\mathrm{m} \angle J K H=(2 b+11)^{\circ}$
24. Given: $Q S T V$ is a rhombus. $\overline{P T} \cong \overline{R T}$ Prove: $\overline{P Q} \cong \overline{R Q}$

25-4 Conditions for Special Parallelograms

Determine if the conclusion is valid. If not, tell what additional information is needed to make it valid.
25. Given: $\overline{A C} \perp \overline{B D}$

Conclusion: $A B C D$ is a rhombus.
26. Given: $\overline{A B} \cong \overline{C D}, \overline{A C} \cong \overline{B D}, \overline{A B} \| \overline{C D}$ Conclusion: $A B C D$ is a rectangle.

Use the diagonals to determine whether a parallelogram with the given vertices is a rectangle, rhombus, or square. Give all the names that apply.
27. $W(-2,2), X(1,5), Y(7,-1), Z(4,-4)$
28. $M(-4,5), N(1,7), P(3,2), Q(-2,0)$
29. Given: $\overline{V X}$ and $\overline{Z X}$ are midsegments of $\triangle T W Y$. $\overline{T W} \cong \overline{T Y}$ Prove: TVXZ is a rhombus.

PARCC Assessment Readiness

Selected Response

1. The diagram shows the parallelogram-shaped component that attaches a car's rearview mirror to the car. In parallelogram $R S T U, U R=25, R X=16$, and $\mathrm{m} \angle S T U=42.4^{\circ}$. Find $S T, X T$, and $\mathrm{m} \angle R S T$.

(A) $S T=16, X T=25, \mathrm{~m} \angle R S T=42.4^{\circ}$
(B) $S T=25, X T=16, \mathrm{~m} \angle R S T=47.8^{\circ}$
(C) $S T=25, X T=16, \mathrm{~m} \angle R S T=137.6^{\circ}$
(D) $S T=5, X T=4, \mathrm{~m} \angle R S T=137.6^{\circ}$
2. Use the diagonals to determine whether a parallelogram with vertices $A(-1,-2), B(-2,0)$, $C(0,1)$, and $D(1,-1)$ is a rectangle, rhombus, or square. Give all the names that apply.
(F) rectangle, rhombus, square
(G) rectangle, rhombus
(H) rectangle
(J) square
3. An artist designs a rectangular quilt piece with different types of ribbon that go from the corner to the center of the quilt. The dimensions of the rectangle are $A B=10$ inches and $A C=14$ inches. Find $B X$.

(A) $B X=7$ inches
(C) $B X=5$ inches
(B) $B X=10$ inches
(D) $B X=14$ inches

Mini-Task

4. Two vertices of a parallelogram are $A(2,3)$ and $B(8,11)$, and the intersection of the diagonals is $X(7,6)$. Find the coordinates of the other two vertices.
