\qquad

Find each of the following volumes for solids who are formed from regions with known cross sections.

1. Find the volume of solid S whose base is the region in the $x y$-plane bounded by the curves $y=x^{2}$ and $y=8-x^{2}$ and whose cross-sections perpendicular to the x-axis are squares with one side in the $x y$-plane.
2. Find the volume of solid S whose base is the region in the $x y$-plane bounded by the x axis, y-axis and line $y=-x+5$ and whose cross-sections perpendicular to the y-axis are equilateral triangles with one side in the $x y$-plane.
3. Find the volume of solid S whose base is the region in the $x y$-plane bounded by the x axis, y-axis and line $y=-x+5$ and whose cross-sections perpendicular to the x-axis are semicircles with diameters in the $x y$-plane.
4. Find the volume of solid S whose base is a circle of radius 2 and whose cross-sections perpendicular to the x-axis are isosceles right triangles with their hypotenuses in the $x y$-plane.
5. Find the volume of solid S who is built from an ellipse with a semi-major axis of 4 and a semi-minor axis of 2 in the $x y$-plane and whose cross-sections perpendicular to the y-axis are circles with their diameters in the $x y$-plane.
