Chapter 12 / Example 9 Optimization problems

A can of dog food contains $500 \mathrm{~cm}^{3}$ of food. The manufacturer wants to make sure that the company received maximum profits by making sure that the surface area of the can has optimal dimensions. Let the radius of the can be $r \mathrm{~cm}$ and the height, $h \mathrm{~cm}$. Find the dimensions of the can that will have the minimum surface area.
$S=\frac{1000}{r}+2 \pi r^{2}$. Find the minimum point where $\frac{\mathrm{d} s}{\mathrm{~d} r}=0$. Press [f1] $y=$ to display the equation entry screen.

Type $\frac{1000}{x}+2 \pi x^{2}$ and press enter to enter the equation as Y_{1}.

Plot1 Plot2 Plot3

- \Y \mathcal{F}_{1} 日 $\frac{1 \theta \theta \theta}{X}+2 \pi X^{2}$
- $\backslash Y_{2}=$
- $\mathrm{VY}_{3}=$
- $Y_{4}=$
VY
$=$
- NY ${ }_{6}=$

NY ${ }^{1}=$

- V $_{8}=$

[^0]
Chapter 12 / Example 9 Optimization problems.

Press [f5] graph when you have finished to display the graph screen

The GDC now displays the quadratic function $\mathrm{Y} 1=\frac{1000}{x}+2 \pi x^{2}$ in a suitable window.

To find the local maximum press 2nd [f4] [calc] 3:minimum You will need to give the left and right bounds of the region that includes the minimum.

The GDC shows a point on the curve and asks you to set the left bound. Move the point using \square and choose a position to the left of the turning point.

Press enter.

The GDC shows a line where you have set the left bound and a point on the curve.

Move the point using $\square \square$ and choose a position to the right of the turning point.

When the region contains the turning point, Press enter.

The GDC requires an initial guess for the position of the turning point. Choose the default position.

Press enter.

The GDC displays the local minimum point at $(4.30,349)$.

Chapter 12 / Example 9 Optimization problems.

An alternative method is to solve $\frac{\mathrm{d} s}{\mathrm{~d} r}=0$.
$S=\frac{1000}{r}+2 \pi r^{2}$ so $\frac{\mathrm{d} s}{\mathrm{~d} r}=-\frac{1000}{r^{2}}+4 \pi r$
Press math B:Solver...

Type $-1000 \div X^{2}+4 \pi X$ in E1 and press enter.
Type 0 in E2 and press enter.

Press XXIPOXX enter [solve].
$\frac{\mathrm{d} s}{\mathrm{~d} r}=0$ when $r=4.30$.
$-1000 / X^{2}+4 \pi X=0$

- X=4.3012700691405 bound=\{-1E99,1E99\}
- E1-E2=0

Find $\frac{\mathrm{d} s}{\mathrm{~d} r}$ when $r=4$ and $r=5$.
Press 2nd [quit] to display the calculator screen and calculate
$-\frac{1 \theta \theta \theta}{4^{2}}+4 * \pi * 4$
-12.23451754
$\frac{10 ө \theta}{5^{2}}+4 * \pi * 5$
22. 83185307

Since the gradient changes from negative to positive, the point is a minimum.

[^0]: WINDOW
 $X_{\text {min }}=0$ $X_{\text {max }}=10$
 Xscl=1
 $Y_{\text {min }}=0$
 Y max $=500$
 Yscl=50
 Xres=1
 $\Delta X=.03787878787878$
 TraceStep=. 07575757575757

