Chapter 12 / Example 7 Maximum and minimum points and optimisation

Consider the curve $s=3 t^{3}+2 t^{2}-4 t+2$.
a Find $\frac{\mathrm{d} s}{\mathrm{~d} t}$.
b On the same axes, sketch $s=3 t^{3}+2 t^{2}-4 t+2$ and its derivative.
c Solve the equation $\frac{\mathrm{d} s}{\mathrm{~d} t}=0$.
d What feature of $s=3 t^{3}+2 t^{2}-4 t+2$ is indicated by these points.
e If the domain of the function is restricted to, $-2 \leq t \leq 2$ find the actual maximum and minimum values of the function.

Press [f 1$]$ y $y=$ to display the equation entry screen.
Type $3 x^{3}+2 x^{2}-4 x+2$ and press enter to enter the equation as Y_{1}.
Press alpha [f2] 3:nDeriv
The template has spaces for the variable, x, the function and the value that it is evaluated at.
Type X for the variable, press alpha [ff] $1: Y_{1}$ for the function and X for the value that it is evaluated at.

Press enter when you have finished.

Press [ff] graph to display the graph screen.
The GDC now displays the quadratic function:
$Y_{1}=3 x^{3}+2 x^{2}-4 x+2$ and its derivative.
The default axes are $-10 \leq x \leq 10$ and $-10 \leq y \leq 10$.

Press [f2] window[format]
Set the axes to show $-2.5 \leq x \leq 2$ with a scale of 0.5 and $-5 \leq y \leq 8$ with a scale of 1 .

You can leave the last three items as they are.
Press [ft] graph when you have finished.

```
Plot1 Plot2 Plot3
```



```
|\ }\mp@subsup{Y}{2}{}=\frac{d}{dX}(\mp@subsup{Y}{1}{})\mp@subsup{|}{X=X}{
-\Y3=
-NY4=
-\Y5=
-\Y6=
|\Y7=
|\Y8=
```


WINDOW
min $=-2.5$
$X_{\text {max }}=2$
Xscl=. 5
Ymin=-5
Ymax $=8$
Yscl=1
Xres=1
$\Delta X=.01704545454545$
TraceStep=.03409090909091

Chapter 12 / Example 7
 Maximum and minimum points and optimisation

Chapter 12 / Example 7
 Maximum and minimum points and optimisation

Repeat for the second zero. The GDC displays a zero at $(0.481,0)$.	
To find the maximum press 2nd [f4] [calc] 4:maximum Select Y_{1} using \square ∇. You will need to give the left and right bounds of the region that includes the maximum. The GDC shows a point on the curve and asks you to set the left bound. Move the point using $\square \square$ and choose a position to the left of the turning point. Press enter.	
The GDC shows a line where you have set the left bound and a point on the curve. Move the point using \square 4 and choose a position to the right of the turning point. When the region contains the turning point, Press enter.	
The GDC requires an initial guess for the position of the turning point. Choose the default position. Press enter.	
The GDC displays the local maximum point at $(-0.925,5.04)$. This corresponds to the first zero of Y_{2}.	

Chapter 12 / Example 7
 Maximum and minimum points and optimisation

To find the minimum press 2nd [f4] [calc] 3:minimum
Select Y_{1} using $\Delta \square$
You will need to give the left and right bounds of the region that includes the minimum.

The GDC shows a point on the curve and asks you to set the left bound. Move the point using $\square \square$ and choose a position to the
 left of the turning point.

Press enter.

The GDC shows a line where you have set the left bound and a point on the curve.

Move the point using \square 4 and choose a position to the right of the turning point.

When the region contains the turning point, Press enter.

The GDC requires an initial guess for the position of the turning point. Choose the default position.

Press enter.

The GDC displays the local maximum point at $(0.481,0.873)$.
This corresponds to the second zero of Y_{2}.

The global maximum and minimum values are at the end points of the curve. These can be viewed in a table. Press 2nd [f5] [table].
A table of values is displayed.
You can scroll through the table using $\Delta \nabla$.
The global minimum value of $Y 1$ is -6 .

Chapter 12 / Example 7
 Maximum and minimum points and optimisation

The global maximum value of Y 1 is 26 .

