\qquad

Answers to MC discussed in class..... ask if you have questions.

1. What are all the horizontal asymptotes of all the solutions of the logistic differential equation $\frac{d y}{d x}=y\left(8-\frac{y}{1000}\right)$?
a. $y=0$
b. $y=8$
c. $y=8,000$
d. $y=0$ and $y=8$
e. $y=0$ and $y=8,000$
2. Suppose $P(t)$ denotes the size of an animal population at time t and its growth is described by the differential equation $\frac{d P}{d t}=0.002 P(1000-P)$. The population is growing fastest
a. initially
b. when $P=500$
c. when $P=1000$
d. when $\frac{d P}{d t}=0$
e. when $\frac{d^{2} P}{d t^{2}}>0$
3. Which of the following statements characterize the logistic growth of a population whose limiting value is L ?
I. The rate of growth increases initially.
II. The growth rate attains a maximum when the population equals $\mathrm{L} / 2$.
III. The growth rate approaches 0 as the population approaches L .
a. I
b. II
c. I and II
d. II and III
e. I, II, III
(I may be true, but not necessarily)
4. (1998 BC 26) The population $P(t)$ of a species satisfies the logistic differential equation $\frac{d P}{d t}=P\left(2-\frac{P}{5000}\right)$, where the initial population $P(0)=3,000$ and t is the time in years. What is $\lim _{t \rightarrow \infty} P(t)$?
A. 2,500
B. 3,000
C. 4,200
D. 5,000
E. 10,000
5. Find the carrying capacity for a population growth rate modeled by $\frac{d P}{d t}=6 P-0.012 P^{2}$.
a. 500
b. 50
c. 0.012
d. 0.002
e. None of these

1993 AB6 - No Calculator (not logistic, but similar)
Let $P(t)$ represent the number of wolves in a population at time t years, when $t \geq 0$. The population $P(t)$ is increasing at a rate directly proportional to $800-P(t)$, where the constant of proportionality is k.
a. If $P(0)=500$, find $P(t)$ in terms of t and k.
(a) $P^{\prime}(t)=k(800-P(t))$

$$
\begin{aligned}
& \frac{d P}{800-P}=k d t \\
& -\ln |800-P|=k t+C_{0} \\
& |800-P|=C_{1} e^{-k t} \\
& 800-500=C_{1} e^{0} \\
& C_{1}=300
\end{aligned}
$$

$$
\text { Therefore } P(t)=800-300 e^{-k t}
$$

b. If $P(2)=700$, find k.
(b) $P(2)=700=800-300 e^{-2 k}$

$$
k=\frac{\ln 3}{2} \approx 0.549
$$

c. Find $\lim _{t \rightarrow \infty} P(t)$.
(c) $\lim _{t \rightarrow \infty}\left(800-300 e^{-\frac{\ln 3}{2} t}\right)=800$

1991 BC6 - No calculator
A certain rumor spreads through a community at the rate of $\frac{d y}{d t}=2 y(1-y)$, where y is the proportion of the population that has heard the rumor at time t.
a. What proportion of the community has heard the rumor when it is spreading the fastest?
(a) $2 y(1-y)=2 y-2 y^{2}$ is largest when $2-4 y=0$
so proportion is $y=\frac{1}{2}$
b. If at time $t=0$ ten percent of the people have heard the rumor, find y as a function of t.
(b) $\frac{1}{y(1-y)} d y=2 d t$

$$
\begin{aligned}
& \int \frac{1}{y(1-y)} d y=\int 2 d t \\
& \int \frac{1}{y}+\frac{1}{1-y} d y=\int 2 d t
\end{aligned}
$$

$$
\ln y-\ln (1-y)=2 t+C
$$

$$
\ln \frac{y}{1-y}=2 t+C
$$

$$
\frac{y}{1-y}=k e^{2 t}
$$

$$
y(0)=0.1 \Rightarrow k=\frac{1}{9}
$$

$$
y=\frac{e^{2 t}}{9+e^{2 t}}
$$

c. At what time t is the rumor spreading the fastest?
(c) $\frac{\frac{1}{2}}{1-\frac{1}{2}}=\frac{1}{9} e^{2 t}$
$1=\frac{1}{9} e^{2 t}$
$t=\frac{1}{2} \ln 9=\ln 3$

