\qquad

Section 1.9 Inverse Functions

Objective: In this lesson you learned how to find inverse functions graphically and algebraically.

Important Vocabulary Define each term or concept.

Inverse function Let f and g be two functions. If $f(g(x))=x$ for every x in the domain of g and $g(f(x))=x$ for every x in the domain of f, then g is the inverse function of the function f. The function g is denoted by f^{-1}.
Horizontal Line Test A function f has an inverse if and only if no horizontal line intersects the graph of f at more that one point.

I. Inverse Functions (Pages 93-94)

For a function f that is defined by a set of ordered pairs, to form the inverse function of f, \ldots interchange the first and second coordinates of each of these ordered pairs.

For a function f and its inverse f^{-1}, the domain of f is equal to
\qquad , and the range of f is equal to
the domain of f^{-1}

To verify that two functions, f and g, are inverse functions of each other, . . find $f(g(x))$ and $g(f(x))$. If both of these compositions are equal to the identity function x for every x in the domain of the inner function, then the functions are inverses of each other.

Example 1: Verify that the functions $f(x)=2 x-3$ and

$$
g(x)=\frac{x+3}{2} \text { are inverse functions of each other. }
$$

II. The Graph of an Inverse Function (Page 95)

If the point (a, b) lies on the graph of f, then the point (b , a \quad) must lie on the graph of f^{-1} and vice versa. The graph of f^{-1} is a reflection of the graph of f in the line
\qquad
$y=x$.
III. One-to-One Functions (Page 96)

To tell whether a function has an inverse function from its graph, . . . simply use the Horizontal Line Test, that is, check to see that no horizontal line intersects the graph of the function at more than one point.

A function f is one-to-one if . . . each value of the dependent variable corresponds to exactly one value of the independent variable.

A function f has an inverse function if and only if f is one-to-one \qquad .

Example 2: Does the graph of the function at the right have an inverse function? Explain.
No, it doesn't pass the Horizontal Line Test.

IV. Finding Inverse Functions Algebraically (Pages 97-98)

To find the inverse of a function f algebraically, . . .

1) Use the Horizontal Line Test to decide whether f has an inverse function.
2) In the equation for $f(x)$, replace $f(x)$ by y.
3) Interchange the roles of x and y, and solve for y.
4) Replace y by $f^{-1}(x)$ in the new equation.
5) Verify that f and f^{-1} are inverse functions of each other by showing that the domain of f is equal to the range of f^{-1}, the range of f is equal to the domain of f^{-1}, and $f\left(f^{-1}(x)\right)=x=f^{-1}(f(x))$.

Example 3: Find the inverse (if it exists) of $f(x)=4 x-5$.

$$
f^{-1}(x)=0.25 x+1.25
$$

What you should learn

How to use the Horizontal Line Test to determine if functions are one-to-one

What you should learn
How to find inverse functions algebraically

Homework Assignment

Page(s)

Exercises

