Trapezoids [65 marks]

The cross-sectional view of a tunnel is shown on the axes below. The line $[A B]$ represents a vertical wall located at the left side of the tunnel. The height, in metres, of the tunnel above the horizontal ground is modelled by $y=-0.1 x^{3}+0.8 x^{2}, 2 \leq x \leq 8$, relative to an origin O .

Point A has coordinates $(2,0)$, point B has coordinates $(2,2.4)$, and point C has coordinates $(8,0)$.

When $x=4$ the height of the tunnel is 6.4 m and when $x=6$ the height of the tunnel is 7.2 m . These points are shown as D and E on the diagram, respectively.

1a. Write down the integral which can be used to find the cross-sectional [2 marks] area of the tunnel.
\qquad

A function f is given by $f(x)=4 x^{3}+\frac{3}{x^{2}}-3, x \neq 0$.
2a. Write down the derivative of f.
\qquad

2b. Find the point on the graph of f at which the gradient of the tangent is [3 marks] equal to 6.

The following diagram shows part of the graph of $f(x)=(6-3 x)(4+x), x \in \mathbb{R}$. The shaded region R is bounded by the x-axis, y-axis and the graph of f.

3a. Write down an integral for the area of region R.
[2 marks]
\square

3b. Find the area of region R.
\qquad

3c. The three points $\mathrm{A}(0,0), \mathrm{B}(3,10)$ and $\mathrm{C}(a, 0)$ define the vertices of a [2 marks] triangle.

Find the value of a, the x-coordinate of C , such that the area of the triangle is equal to the area of region R.
\qquad

Consider the curve $y=x^{2}-4 x+2$.

4a. Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
\qquad

4b. Show that the normal to the curve at the point where $x=1$ is
$2 y-x+3=0$.
\qquad

The diagram shows the curve $y=\frac{x^{2}}{2}+\frac{2 a}{x}, x \neq 0$.

The equation of the vertical asymptote of the curve is $x=k$.

5a. Write down the value of k.

5b. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
[3 marks]
\qquad

5c. At the point where $x=2$, the gradient of the tangent to the curve is 0.5 . [2 marks] Find the value of a.

The function $f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+k x+5$ has a local maximum and a local minimum. The local maximum is at $x=-3$.

6a. Show that $k=-6$.
\qquad

6 b. Find the coordinates of the local minimum.
\qquad

6 c. Write down the interval where the gradient of the graph of $f(x)$ is negative.
\qquad

6 d . Determine the equation of the normal at $x=-2$ in the form $y=m x+c$.
\qquad

Consider the curve $y=5 x^{3}-3 x$.
7a. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
[2 marks]
\square

The curve has a tangent at the point $\mathrm{P}(-1,-2)$.

7b. Find the gradient of this tangent at point P.
\square

7c. Find the equation of this tangent. Give your answer in the form $y=m x+[2$ marks $]$ c.
\square

Let $f(x)=6 x^{2}-3 x$. The graph of f is shown in the following diagram.

8a. Find $\int\left(6 x^{2}-3 x\right) \mathrm{d} x$.
\square

8b. Find the area of the region enclosed by the graph of f, the x-axis and the[4 marks] lines $x=1$ and $x=2$.

Consider the curve $y=2 x^{3}-9 x^{2}+12 x+2$, for $-1<x<3$

9a. Sketch the curve for $-1<x<3$ and $-2<y<12$.
\square

9b. A teacher asks her students to make some observations about the curve. [1 mark]
Three students responded.
Nadia said "The x-intercept of the curve is between -1 and zero".
Rick said "The curve is decreasing when $x<1$ ".
Paula said "The gradient of the curve is less than zero between $x=1$ and $x=2$ ".
State the name of the student who made an incorrect observation.

9c. Find $\frac{d y}{d x}$.
\qquad

9d. Given that $y=2 x^{3}-9 x^{2}+12 x+2=k$ has three solutions, find the [3 marks] possible values of k.

