Graphing Quadratics in Vertex Form

Quadratic functions can be written in different forms. One such form is called "vertex form" and the reason it is called vertex form is because you can easily find the vertex of the equation and the axis of symmetry equation.

VERTEX FORM: $\quad \mathrm{y}=\mathrm{a}(\mathrm{x}-\mathrm{h})^{2}+\mathrm{k}$
Now, what do all of these variables mean:

The "a"

If the " a " is negative, then the parabola opens down
If the "a" is positive, then parabola opens up
The "h"
The " h " is the x-value of the vertex and therefore the axis of symmetry equation is $\mathrm{x}=\mathrm{h}$. This gives us the vertical line of symmetry for the parabola.

* Notice that there is a negative in the model, so the " h " we use is always opposite to what you see in the equation.

The " k "
The " k " is the y-value of the vertex.

Characteristics

- Domain is always: all real numbers
- If "a" is positive, then the graph opens up and the range is $y \geq \ldots k$
- If " a " is negative, then the graph opens _down_ and the range is $y \leq \ldots \ldots{ }_{\ldots}$

Examples:

$y=(x-1)^{2}+2$
$a=1$
$\mathrm{h}=1$
$\mathrm{k}=\underline{2}$
Therefore:
It opens \qquad and its vertex is
(1,2)
Axis of symmetry: $x=1$
Domain is all real numbers
Range is $y \geq 2$
\qquad
$y=-3(x+4)^{2}-5$
$\mathrm{a}=-3$
$h=-4$
$\mathrm{k}=\underline{-5}$
Therefore:
It opens down and its vertex is
($-4,-5$)
Axis of symmetry: $x=-4$
Domain is all real numbers
Range is $y \leq-5$

Try some on your own:
a. $y=-(x-3)^{2}-3$
Opens: down
Vertex: (3 , -3)
Axis of symmetry: $x=3$
Domain: all real numbers
Range: $\quad \mathrm{y} \leq-3$
c. $y=-4(x-8)^{2}$
Opens: down
Vertex: (8 , 0)
Axis of symmetry: $x=8$
Domain: all real numbers
Range: $\quad \mathrm{y} \leq 0$
b. $y=\frac{2}{3}(x+2)^{2}+10$
Opens: up
Vertex: (-2 , 10)
Axis of symmetry: $x=-2$
Domain: all real numbers
Range: $y \geq 10$
d. $y=2 x^{2}-5$

Opens: up
Vertex: ($0,-5$)
Axis of symmetry: $x=0$
Domain: all real numbers
Range: $y \geq-5$

To graph equations in vertex form, you will be asked to graph the vertex and two other points in order to graph the parabola.

Steps to Graphing Vertex Form

1. Find the vertex (h, k) and plot
2. Pick a value for x other than the x of the vertex and plug it in for x to find the corresponding y and plot. (HINT: You should pick zero or a value 1 or 2 above or below the x of the vertex)
3. Plot the symmetrical point to the point you found across the axis of symmetry.
4. Draw parabola.

Examples:

$y=(x-4)^{2}-3$
Opens: up
Vertex: (4 , -3)
Axis of symmetry: $x=4$
Domain: all real numbers
Range: $y \geq-3$

$y=-2(x+1)^{2}+5$
Opens: down
Vertex: (-1 , 5)
Axis of symmetry: $\underline{x=-1}$
Domain: all real numbers
Range: $\mathrm{y} \leq 5$

