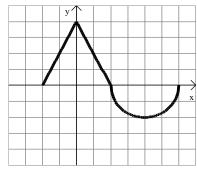
Given $\frac{dy}{dx} = 3x^2 + 4x - 5$ with the initial condition y(2) = -1. Find y(3). <u>Method 1</u>: Integrate $y = \int (3x^2 + 4x - 5) dx$, and use the initial condition to find *C*. Then write the particular solution, and use your particular solution to find y(3).

<u>Method 2</u>: Use the Fundamental Theorem of Calculus: $\int_{a}^{b} f'(x) dx = f(b) - f(a)$

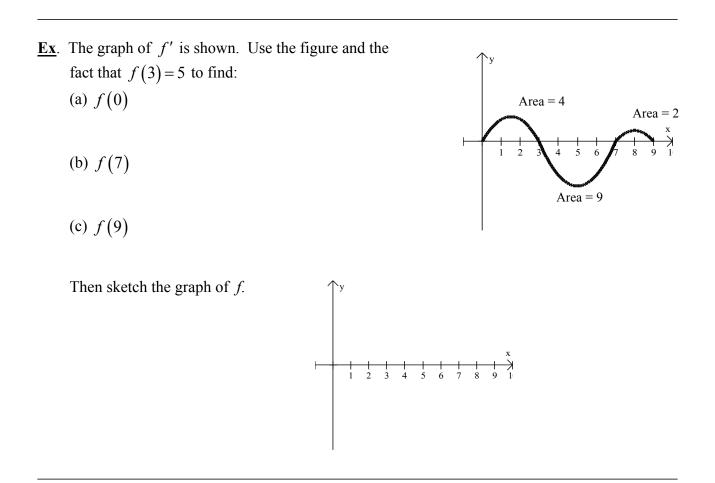
Sometimes there is no antiderivative so we have to use Method 2 and our graphing calculator. <u>**Ex.**</u> $f'(x) = \sin(x^2)$ and f(2) = -5. Find f(1). **<u>Ex</u>**. The graph of f' consists of two line segments and a semicircle as shown on the right. Given that f(-2) = 5, find:

- (a) f(0)
- (b) f(2)



Graph of f'

(c) f(6)



Ex. A pizza with a temperature of 95°C is put into a 25°C room when t = 0. The pizza's temperature is decreasing at a rate of $r(t) = 6e^{-0.1t}$ °C per minute. Estimate the pizza's temperature when t = 5 minutes.

CALCULUS WORKSHEET ON FUNDAMENTAL THEOREM OF CALCULUS

Work the following on **notebook paper**.

Work problems 1 - 3 by both methods.

1.
$$y' = 2 + \frac{1}{x^2}$$
 and $y(1) = 6$. Find $y(3)$.

2.
$$f'(x) = \cos(2x)$$
 and $f(0) = 3$. Find $f\left(\frac{\pi}{4}\right)$

3. Water flows into a tank at a rate of $\frac{dW}{dt} = \frac{1}{75} (600 + 20t - t^2)$, where $\frac{dW}{dt}$ is measured in gallons per hour and t is measured in hours. If there are 150 gallons of water in the tank at time t = 0, how many gallons of water are in the tank when t = 24?

Work problems 4 – 8 using the Fundamental Theorem of Calculus and your calculator. 4. $f'(x) = \cos(x^3)$ and f(0) = 2. Find f(1).

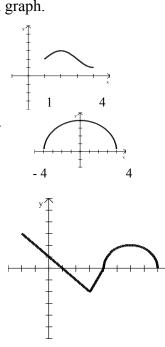
- 5. $f'(x) = e^{-x^2}$ and f(5) = 1. Find f(2).
- 6. A particle moving along the x-axis has position x(t) at time t with the velocity of the particle $v(t) = 5\sin(t^2)$. At time t = 6, the particle's position is (4, 0). Find the position of the particle when t = 7.
- 7. Let F(t) represent a bacteria population which is 4 million at time t = 0. After t hours, the population is growing at an instantaneous rate of 2^t million bacteria per hour. Find the total increase in the bacteria population during the first three hours, and find the population at t = 3 hours.
- 8. A particle moves along a line so that at any time $t \ge 0$ its velocity is given by

$$v(t) = \frac{t}{1+t^2}$$
. At time $t = 0$, the position of the particle is $s(0) = 5$. Determine the position of the particle at $t = 3$

the position of the particle at t = 3.

Use the Fundamental Theorem of Calculus and the given graph.

- 9. The graph of f' is shown on the right. $\int_{1}^{4} f'(x) dx = 6.2$ and f(1) = 3. Find f(4).
- 10. The graph of f' is the semicircle shown on the right. Find f(-4) given that f(4) = 7.
- 11. The graph of f', consisting of two line segments and a semicircle, is shown on the right. Given that f(-2) = 5, find:
 - (a) f(1) (b) f(4) (c) f(8)



- 12. Let f be the function whose graph goes through the point (3, 6) and whose derivative is given by $f'(x) = \frac{1+e^x}{x^2}$ Find f(3.1)
- 13. (Multiple Choice) If f is the antiderivative of $\frac{x^2}{1+x^5}$ such that f(1)=5, then f(4)=(A) 4.988 (B) 5 (C) 5.016 (D) 5.376 (E) 5.629

Answers to Worksheet on the First Fundamental Theorem of Calculus

$\frac{1}{1 \cdot \frac{32}{3}}$	7. 10.099 million, 14.099 million
2. $\frac{7}{2}$	8. 6.151
3. 357.36 gallons	9. 9.2
4. 2.932	10. $7 - 8\pi$
5. 0.996	11. (a) 9.5 (b) 6.5 (c) $6.5 + 2\pi$
6. 3.837	12. 6.238
13. D	