Given $\frac{d y}{d x}=3 x^{2}+4 x-5$ with the initial condition $y(2)=-1$. Find $y(3)$.
Method 1: Integrate $y=\int\left(3 x^{2}+4 x-5\right) d x$, and use the initial condition to find C. Then write the particular solution, and use your particular solution to find $y(3)$.

Method 2: Use the Fundamental Theorem of Calculus: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$

Sometimes there is no antiderivative so we have to use Method 2 and our graphing calculator. Ex. $f^{\prime}(x)=\sin \left(x^{2}\right)$ and $f(2)=-5$. Find $f(1)$.

Ex. The graph of f^{\prime} consists of two line segments and a semicircle as shown on the right. Given that $f(-2)=5$, find:
(a) $f(0)$
(b) $f(2)$

(c) $f(6)$

Ex. The graph of f^{\prime} is shown. Use the figure and the fact that $f(3)=5$ to find:
(a) $f(0)$
(b) $f(7)$
(c) $f(9)$

Then sketch the graph of f.

Ex. A pizza with a temperature of $95^{\circ} \mathrm{C}$ is put into a $25^{\circ} \mathrm{C}$ room when $t=0$. The pizza's temperature is decreasing at a rate of $r(t)=6 e^{-0.1 t}{ }^{\circ} \mathrm{C}$ per minute. Estimate the pizza's temperature when $t=5$ minutes.

CALCULUS

WORKSHEET ON FUNDAMENTAL THEOREM OF CALCULUS

Work the following on notebook paper.
Work problems 1-3 by both methods.

1. $y^{\prime}=2+\frac{1}{x^{2}}$ and $y(1)=6$. Find $y(3)$.
2. $f^{\prime}(x)=\cos (2 x)$ and $f(0)=3$. Find $f\left(\frac{\pi}{4}\right)$.
3. Water flows into a tank at a rate of $\frac{d W}{d t}=\frac{1}{75}\left(600+20 t-t^{2}\right)$, where $\frac{d W}{d t}$ is measured in gallons per hour and t is measured in hours. If there are 150 gallons of water in the tank at time $t=0$, how many gallons of water are in the tank when $t=24$?

Work problems 4-8 using the Fundamental Theorem of Calculus and your calculator.
4. $f^{\prime}(x)=\cos \left(x^{3}\right)$ and $f(0)=2$. Find $f(1)$.
5. $f^{\prime}(x)=e^{-x^{2}}$ and $f(5)=1$. Find $f(2)$.
6. A particle moving along the x-axis has position $x(t)$ at time t with the velocity of the particle $v(t)=5 \sin \left(t^{2}\right)$. At time $t=6$, the particle's position is $(4,0)$. Find the position of the particle when $t=7$.
7. Let $F(t)$ represent a bacteria population which is 4 million at time $t=0$. After t hours, the population is growing at an instantaneous rate of 2^{t} million bacteria per hour. Find the total increase in the bacteria population during the first three hours, and find the population at $t=3$ hours.
8. A particle moves along a line so that at any time $t \geq 0$ its velocity is given by $v(t)=\frac{t}{1+t^{2}}$. At time $t=0$, the position of the particle is $s(0)=5$. Determine the position of the particle at $t=3$.

Use the Fundamental Theorem of Calculus and the given graph.
9. The graph of f^{\prime} is shown on the right.
$\int_{1}^{4} f^{\prime}(x) d x=6.2$ and $f(1)=3$. Find $f(4)$.

10. The graph of f^{\prime} is the semicircle shown on the right. Find $f(-4)$ given that $f(4)=7$.

11. The graph of f^{\prime}, consisting of two line segments and a semicircle, is shown on the right. Given that $f(-2)=5$, find:
(a) $f(1)$
(b) $f(4)$
(c) $f(8)$

12. Let f be the function whose graph goes through the point $(3,6)$ and whose derivative is given by $f^{\prime}(x)=\frac{1+e^{x}}{x^{2}}$ Find $f(3.1)$
13. (Multiple Choice) If f is the antiderivative of $\frac{x^{2}}{1+x^{5}}$ such that $f(1)=5$, then $f(4)=$
(A) 4.988
(B) 5
(C) 5.016
(D) 5.376
(E) 5.629

Answers to Worksheet on the First Fundamental Theorem of Calculus

1. $\frac{32}{3}$
2. 10.099 million, 14.099 million
3. $\frac{7}{2}$
4. 6.151
5. 357.36 gallons
6. 9.2
7. 2.932
8. $7-8 \pi$
9. 0.996
10. (a) 9.5
(b) 6.5
(c) $6.5+2 \pi$
11. 3.837
12. 6.238
13. D
