Section 3.2: Finding Limits Graphically and Numerically

Consider the function $f(x)=\frac{x^{2}-1}{x-1}$. What happens at $x=1$?
We certainly can't find a function value there because $f(1)$ is undefined so the best we can do is to see what happens near the point $x=1$. To do this we will graph the function. Since the function isn't easy to graph as it is written we will simply plot a few points:

There is a hole at $x=1$ which is consistent with the fact that the function is undefined there. We can put in numbers into the function as close to 1 as we would like but we can't use 1 itself. Just saying that the function is undefined there doesn't tell us much about the function. What we would like to be able to answer is the question:

Q: What happens to $f(x)$ near $x=1$?

A: As x gets close to 1 the value of $f(x)$ gets close to 2 . We can see this from the graph. We read x across the horizontal axis the values for $f(x)$ are on the vertical axis. The graph is approaching the y value 2 as x gets close to 1 .
We could also see this from the chart of values. You will notice that the $f(x)$ values are getting close to 2 as x is getting closer to 1 .

We can write this mathematically the following way:
$\lim _{x \rightarrow 1} f(x)=2$. We read this as "the limit as x approaches 1 of $f(x)$ is 2 ". There are the possible outcomes to a limit:

1. the limit doesn't exist
2. the limit exists and is a number
3. the limit exists and is $\pm \infty$

There are also different ways of finding a limit. We have seen two ways of finding the limit:

1. We tried numbers close to $x=1$ and we checked what happened.
2. We looked at the graph and we saw what the function value was near $x=1$.

Reading the limit off a graph is the easiest way to find the limit. Trying to create a table on numbers will work if the function behaves well. If it tends to change values very quickly this method may not be very accurate.

NOTE: The most important thing to remember when solving for limits is that we only care about what is happening to the function NEAR the point and NOT what is happening at the point.

Here are some examples with tables:
Ex 1: $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}$. Once again this is asking the question, "What happens to the function as x gets close to $2 "$. We need a table with values close to 2 .

x 1.9 1.99 1.999 2 2.001 2.01 2.1 $\frac{x-2}{x^{2}-4}$.25641 .250627 .25006 undefined .249938 .249377 .243902							
Close to 0.25 Close to 0.25							

You can tell that the values are getting close to 0.25 or $1 / 4$.
Ex 2: $\lim _{x \rightarrow 4} \frac{\left(\frac{x}{x+1}\right)-\frac{4}{5}}{x-4}$

χ	3.9	3.99	3.999	4	4.001	4.01	4.1
$\frac{\left(\frac{x}{x+1}\right)-\frac{4}{5}}{x-4}$. 040816	. 04008	. 04000	undefined	. 03999	. 03992	. 03921
	Close to 0.04				Close to 0.04		

Here the values are approaching 0.04

Another way to find limits is graphically. We look at the graph and we know what happens to x so we read the limit from the values on the y axis.

Ex 3: Use the graph of $f(x)$ below to find the limits

a) $\lim _{x \rightarrow-3} f(x)=3$
b) $\lim _{x \rightarrow 0} f(x)=3$
c) $\lim _{x \rightarrow-2} f(x)=1$
d) $\lim _{x \rightarrow 1} f(x)=2$
e) $\lim _{x \rightarrow-1} f(x)=$ Does Not Exist because the function does not come to one place at $x=1$. From one side the function values are approaching 1 and from the other side the values are approaching 2.

Ex 4: $\lim _{x \rightarrow 0} \frac{|x|}{x}$
We will do this problem 2 ways. By a chart and by a graph.

x	-3	-2	-1	0	1	2	3
$\frac{\|x\|}{x}$	-1	-1	-1	undefined	1	1	1

From either of these methods we can see that the function does not approach one unique value. From one side we are at -1 and from the other side we are at +1 . Since these are not the same the limit does not exist.

