4.4 Parallel and perpendicular lines

1 The movement of a robot football match have been mapped on a set of axes where $(0,0)$ is the center of the pitch and the following equations represent the movement of the ball. Identify
i the parallel movements
ii the perpendicular movements
a $y=2 x+5$
b $y=5 x+2$
c $y-5 x=2$
d $y-7=2 x$
e $y-2 x=6$
f $\quad y+0.2 x=6$
g $y=2 x-5$
h $\quad y=2$
i $y=2 x$
j $y=5 x$
k $y=0.5 x$
I $y=-0.5 x$
m $2 x=y$
n $\quad x=\frac{1}{5} y$

2 a Show that a robot going in a straight line through the points $(-4,3)$ and $(11,6)$ will meet a robot going through the point $(1,2)$ and $(2,5)$
b Find the equation representing their movements
c where they meet
3 The ball is moving in the direction $\boldsymbol{y}=4 \boldsymbol{x}+3$. A robot is standing on $(-1,3)$
a find the equation of the shortest pass to the line representing the movement of the ball.
b find where the robot will catch the ball.
4 Two robots moving in perpendicular direction met at $(4,-4)$ if one of the robots came from $(3,6)$,
a find the equation of the second robot.
b find the two possible original positions of the second robot if he travels as much as the other robot to reach $(4,-4)$

5 A robot comes in the direction $y+\frac{1}{8} x=-3$. The goalkeeper who is standing on $(-10,0)$ wants to send him the ball making the shortest distance.
a Find the equation of the ball making shortest pass between the goal keeper and the other robot.
b Find where the robot will catch the ball.
6 The goal keeper only moves on the line $x=15$ two strikers are located at S1 $(13,3)$ and S2 $(12,-2)$. Find the best position to stand so that the combined distance from its position to both striker is shortest.

7 The referee only moves on the line $y=4$ two furthest players are located at P1 $(-8,2)$ and P2 $(10,-2)$. Find the best position to stand so that the combined distance from the referee's position to both players is shortest.

8 The goal is located at $G(-13,0)$, a striker is placed at $S(-9,2)$, if the defense robot can only move on the line $y=\frac{1}{2} x+5$, find the best position to take so that the combined distance from its position to the goal or the striker is shortest

9 A laser-cutter has been programmed to cut pieces of wood.
Find the resulting shape. The equations it has been programmed with are:
a $y=2, y=6.5, x=-1.2, x=3.1$
b $\quad y=2, y=6.5, y=2 x+3, y=2 x-3$
c $x=2, x=-6.5, y=2 x+3, y=3 x-1$

Answers

1 i a, d, e, g, i and m or b, c, j and n
ii a and I, a and f
2 a as their gradient are different e.g $\frac{3}{15}=\frac{1}{5} \neq 3$ so they will meet
b $\quad y=\frac{1}{5} x+\frac{19}{5}$ and $y=3 x-1$
c $\left(\frac{12}{7}, \frac{29}{7}\right)$

3 a $y=-\frac{1}{4} x+2.75$

4 a $y=\frac{1}{10} x-4.4$

5 a $y=8 x-10$
b $\left(-\frac{2}{30}, \frac{82}{30}\right)$
b $(14,-3)$ or $(-6,-5)$
b $\left(\frac{56}{65}, \frac{-202}{65}\right)$

6 The shortest point from S_{1} to the line is $(15,-2)$
so the image of S_{1} reflected in the line is $S_{1}{ }^{\prime}(18,-2)$
the equation of $\mathrm{S}_{1}{ }^{\prime} \mathrm{S}_{2} \boldsymbol{y}=-\boldsymbol{x}+23$
$\mathrm{S}_{1}{ }^{\prime} \mathrm{S}_{2}$ cuts the $\mathrm{x}=15$ at $(15,1)$
So $(15,1)$ is the best position
7 The shortest point from P_{2} to the line is $(10,4)$
so the image of P_{2} reflected in the line is $P_{2}{ }^{\prime}(10,8)$
the equation of $\mathrm{P}_{2}^{\prime} \mathrm{P}_{1} y=\frac{1}{3} x+\frac{14}{3}$
$P_{2}{ }^{\prime} P_{1}$ cuts the $y=4$ at $(-2,4)$
So $(-2,4)$ is the best position
8 The shortest point from G to the line is $(-12,-1)$
so the image of G reflected in the line is $\mathrm{G}^{\prime}(-11,-2)$
the equation of G'S $y=2 x+20$
G'S cuts the $y=\frac{1}{2} x+5$ at $(-10,0)$
So $(-10,0)$ is the best position
9 a 2 set of parallel lines (horizontal and vertical) with same length and a perpendicular angle make a square
b 2 sets of parallel lines (horizontal and diagonal e.g. $y=2 x+.$.) parallelogram
c 1 set of parallel lines (vertical) the other sides are not parallel so it is a trapezium

