4.1 Coordinates, distance and midpoint formula in 2D and 3D

1 A treasure has been hidden somewhere in the forest. Find its 3D position using the following instructions.
a To situate the starting point, find the right angle triangle $A B C$ among the following option and state the coordinate where it happens:
$1 A(3,0) \mathrm{B}(4,0) \mathrm{C}(1,2)$
$3 \quad A(-2,1) B(1,-2) C(3,0)$
$5 A(1,-\sqrt{2}) B(1, \sqrt{2}) C(1+\sqrt{5}, 0)$
$2 A(-6,-2) B(-4,3) C(-2,8)$
$4 A(-2,-2 \sqrt{3}) B(4,0) C(-2,2 \sqrt{3})$
$6 \quad A(\sqrt{7}, 4) B(2 \sqrt{7}, 2) C(\sqrt{7}, 2)$
i Find $A B, B C, A C$ for each
ii State whether there are equilateral, isosceles or scalene
iii State whether any of $\angle \mathrm{ABC}, \angle \mathrm{BAC}$ and $\angle \mathrm{CAB}$ is a right angle
iv State the coordinate of the vertex of 90° angle
b then calculate
i the coordinate of D such that D on $A D=\frac{1}{3} A C$
ii the coordinate of E the midpoint of DB
iii the coordinate of $F(a,-3.5)$ such that $E F$ will be 5 units apart.
iv the coordinate of G such that $A B C G$ form a rectangle
v the coordinate of H such that HGC is isosceles and H is $\sqrt{29}$ units away from A
vi the coordinate of I such as F is the midpoint of HI
c Now let's raise above the floor and find
i the distance between I whose z coordinate is 0 and $(-2,4,12)$
ii the coordinate of J the midpoint between I and $(-4,8,12)$
iii The coordinate of the point K such as K is in the form ($5,-a, 3 a$) and JK $=13$
iv The coordinate of the point L such that $K L$ is the diameter of a sphere of radius 13 center J.
v The coordinates of the point M such that MZLK is a parallelogram and $Z=(3,0,-6)$
vi The coordinates of the point N such that NYKM is a square and $Y=(7,-2,18)$
$\mathbf{v i i}$ The coordinate of the point O the position of the treasure which is the midpoint of NL
Extension: challenge yourself and find the coordinates of the cube KMNYSPQR such that the face OPQR and thus the vertices O, P, Q and R and further away from J than the face KMNY

Answers

1 a i,ii,iii

triangle	AB	$\mathbf{B C}$	$\mathbf{A C}$		
1	1	$\sqrt{6}$	$2 \sqrt{2}$		
2	$\sqrt{29}$	$2 \sqrt{29}$	$\sqrt{29}$	Straight line	
3	$\sqrt{18}$	$\sqrt{26}$	$\sqrt{8}$	Right angles	BAC 4
5	$2 \sqrt{48}=4 \sqrt{3}$	$\sqrt{48}$	$\sqrt{48}$	equilateral	
6	$\sqrt{11}$	$\sqrt{7}$	$2 \sqrt{2}$	isoceles	

iv the starting point is $A(-2,1)$
b i $\quad D=(0,-1) \quad$ ii $\quad E=(1.5,-0.5)$
iii $5^{2}-(-3.5)^{2}=a^{2}$ so $F=(5.5,-3.5)$
iv $G=(-2+2,1+2)=(0,3)$
v $H=(3,3,0)$
vi $\mathrm{I}=(8,-10)$
c i $2 \sqrt{110}$
ii $J=(2,-2,6)$
iii $K=(5,-6,18)$
iv $L=(-1,2,-6)$
v $\quad M=(9,-8,18)$
vi $N=(11,-4,18)$
vii $O=(5,-1,6)$

Extension:

$S=(7,-2, \sqrt{505}), P=(5,-6, \sqrt{505}), Q=(9,-8, \sqrt{505})$ and $R=(11,-4, \sqrt{505})$

