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How do we create efficient routes for the delivery of goods and services 
(such as mail delivery, garbage collection, police patrols, newspaper 
deliveries, and late-night pizza deliveries) along the streets of a city, 
town, or neighborhood. !

These types of management science problems are known as Euler 
circuit problems.!

Euler Paths and Circuits!
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What is a routing problem? To put it in the most general way, routing 
problems are concerned with finding ways to route the delivery of 
goods and/or services to an assortment of destinations. !

The goods or services in question could be packages, mail, 
newspapers, pizzas, garbage collection, bus service, and so on. !

The delivery destinations could be homes, warehouses, distribution 
centers, terminals, and the like. 

Routing Problems!
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The existence question is simple: Is an actual route possible? For most 
routing problems, the existence question is easy to answer, and the 
answer takes the form of a simple yes or no.!

When the answer to the existence question is yes, then a second 
question–the optimization question–comes into play. !

Of all the possible routes, which one is the optimal route? Optimal 
here means “the best” when measured against some predetermined 
variable such as cost, distance, or time.!

Two Basic Questions!
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The common thread in all Euler circuit problems is what we might call, 
the exhaustion requirement– the requirement that the route must 
wind its way through . . . everywhere. !

Thus, in an Euler circuit problem, by definition every single one of the 
streets (or bridges, or lanes, or highways) within a defined area (be it 
a town, an area of town, or a subdivision) must be covered by the 
route. We will refer to these types of routes as exhaustive routes.

Euler Circuit Problems !
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A private security guard is hired to patrol the streets of the Sunnyside 
neighborhood shown next.!

The security guard’s assignment is to make an exhaustive patrol, on foot, 
through the entire neighborhood.!

Obviously, he doesn’t want to walk any more than what is necessary. His 
starting point is the southeast corner across from the school (S)–that’s 
where he parks his car.!

Example Walking the ‘Hood’!
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(This is relevant because at the 
end of his patrol he needs to come 
back to S to pick up his car.)!

Example!
Walking the ‘Hood’!
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Being a practical person, the security guard would like the answers to two 
questions: !

(1) Is it possible to start and end at S, cover every block of the 
neighborhood, and pass through each block just once?!

(2)  If some of the blocks will have to be covered more than once, what is 
an optimal route that covers the entire neighborhood?!

Optimal here means “with the minimal amount of walking.” 

Example Walking the ‘Hood’!
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Example The Bridges of Madison County!
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A photographer needs to drive across each bridge once for the photo 
shoot. Moreover, since there is a $25 toll (the locals call it a 
“maintenance tax”) every time an out-of-town visitor drives across a 
bridge, the photographer wants to minimize the total cost of his trip and 
to recross bridges only if it is absolutely necessary. !

What is the optimal (cheapest) route for him to follow?!

Example  The Bridges of Madison County!
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The Figure on the next slide shows a few simple line drawings. The name 
of the game is to trace each drawing without lifting the pencil or 
retracing any of the lines. !

These kinds of tracings are called unicursal tracings. (When we end in the 
same place we started, we call it a closed unicursal tracing; when we start 
and end in different places, we call it an open unicursal tracing.) !

Example Child’s Play!
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Which of the drawings can be traced with closed unicursal tracings? 
Which with only open ones?
How can we tell if a unicursal tracing (open or closed) is possible? !

Example Child’s Play!
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Euler circuit problems can all be tackled by means of a single unifying 
mathematical concept–the concept of a graph. 
The most common way to describe a graph is by means of a picture. 
The basic elements of such a picture are:!
a set of “dots” called the vertices of the graph and 
a collection of “lines” called the edges of the graph. !

On the surface, that’s all there is to it–lines connecting dots! Below the 
surface there is a surprisingly rich theory. Let’s explore a few basic 
concepts first.

What Is a Graph? 
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This graph has six vertices called A, B, C, D, E and F. 

Example Connect the Dots 

Each edge can be described by 
listing (in any order) the pair of 
vertices that are connected by the 
edge. Thus, the edges of this graph, 
listed in random order, are AB, BC, 
CD, AD, DE, EB, CD, and BB. 
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Notice several important things about the edges of the graph:!

Example Connect the Dots 

■ It is possible for an edge to 
connect a vertex back to itself, 
as is the case with BB. These 
type of edges are called 
loops.!
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■ It is possible for two edges to 
connect the same pair of 
vertices, as is the case with CD, 
which is a “double edge.”!

In general, we refer to such 
edges as multiple edges.!

Example Connect the Dots 
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■ Sometimes edges “cross” each 
other at incidental crossing 
points that are not themselves 
vertices of the graph. !

      Such is the case with the 
crossing point created by edges 
AD and BE .

Example Connect the Dots 
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■ Edges do not have a direction; 
thus, there is no right or wrong 
order to write an edge–AB or 
BA are both acceptable. 

Example Connect the Dots 
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A convenient way to describe the vertices and edges of a graph is by 
using the notation of sets. !

For the graph shown here the vertex set is V = {A, B, C, D, E, F}, 
and the

Example Connect the Dots 

edge set is E = {AB, AD, BB, BC, BE, CD, 
CD, and DE}. Notice that CD appears twice in 
the edge set, indicating that there are two 
edges connecting C and D.!
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Imagine that as part of a sociology study we want to describe the network 
of “friendships” that develops among a group of students through their 
Facebook sites. !

We can illustrate this very nicely with a graph such as the one on the next 
slide. 

Example  Relationship Graphs 
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Example Relationship Graphs 
In this graph the vertices represent people (the students), 
and an edge connecting vertex X  to vertex Y  implies that X 
and Y are “Facebook friends.”  
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Here is a graph with four isolated vertices and having no edges. !

We won’t be seeing graphs like this too often, but it’s important to know 
that graphs with no edges are allowed. !

Example Pure Isolation 

The edge set of a graph with no edges is the 
empty set (we can write it as E = {   } or E = φ).!
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Suppose you are given the following information about a graph: The 
vertex set is V = {A, D, L, and R}, and the edge set is!
E = {AD, AL, AL, AR, AR, DL, DR}.!

But where is the picture? You are told that if you really want a picture, 
you can make up your own. That’s fine, but where should you place the 
vertices? What should the edges look like?!

Good news: These issues are irrelevant! You have total freedom to place 
the vertices anywhere you please, and as long as you connect the right 
pairs of vertices, you can connect them any way you like!!

Example Pictures Optional 
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Here are two pictures of the same graph. !

Example Pictures Optional 
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While they may look like two totally different pictures to the casual 
observer, they both describe the same vertex set V = {A, D, L, and R} 
and the same edge set E = {AD, AL, AL, AR, AR, DL, DR}. 

Example Pictures Optional 
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We think of a graph as a picture consisting of dots and lines, but the 
picture is just a visual representation of a more abstract idea: a set of 
objects (represented by the vertices of the graph) and a relationship 
among pairs of objects (represented by the edges of the graph.) !

All one needs to describe these two things are a vertex setV  and an 
edge set E.  A picture is nice but not essential. !

Thus, if we simply give the vertex set isV = {A, D, L, and R}, and the 
edge set isE = {AD, AL, AL, AR, AR, DL, DR}. we have defined a 
graph.!

Important Point 
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A graph is a structure consisting of a 
set of objects (the vertex set) and a list 
describing how pairs of objects are 
related (the edge set). Relations among 
objects include the possibility of an 
object being related to itself (a loop) as 
well as multiple relations between the 
same pair of objects (multiple edges). 

GRAPH 
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In this section we will introduce some important concepts and 
terminology that are associated with graph theory.!

Terminology 
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We say that two vertices in a graph are adjacent if they are joined by 
an edge. !
Vertices A and B are adjacent and so are vertices B and C. Vertices C and 
D are not adjacent, and neither are vertices A and E.  !

Example Adjacency 

Because of the loop EE, 
we say that vertex E is 
adjacent to itself.!
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The degree of a vertex is the number of edges meeting at that vertex.!

A loop counts twice toward the degree. We will use the notation deg(V) to 
denote the degree of vertex V.!

In the figure shown here, the degrees of the vertices are as follows: 
deg(A) = 3,  deg(B) = 5, 

Example Degree of a Vertex 

deg(C) = 3,  deg(D) = 2, !
deg(E) = 4,  deg(F) = 3, !
deg(G) = 1, and deg(H) = 1.!
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Because distinguishing vertices with an even degree from vertices with an 
odd degree is going to be critical later on, we will often refer to vertices 
as even vertices or odd vertices, depending on their degree. !

Example Degree of a Vertex 

This graph has two even vertices 
(D and E) and six odd vertices 
(all the others).!
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Paths and circuits both describe “trips” along the edges of a graph. !

The only real difference between a path and a circuit is that: !

a circuit is a “closed” trip (the trip ends back at the starting point), 
whereas a path is an “open” trip (the starting and ending points are 
different). !

In this context, by a “trip” (be it a path or a circuit), we mean a sequence 
of adjacent edges with the property that an edge can be traveled just 
once. 

Example Paths and Circuits 
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The standard way to describe a path or a circuit is by listing the vertices 
in order of travel. Here are a few examples of paths and circuits using 
the graph shown here:!

Example Paths and Circuits 

■  A, B, E, D  is a path from vertex A to vertex D. The edges of this path 
in order of travel!

 are AB, BE, and ED. The 
length of the path (i.e., the 
number of edges in the path) 
is 3. 
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■ A, B, C, A, D, E  is a path of length 5 from A to E.  This path visits 
vertex A twice (that’s fine), but no edge is repeated. 

Example Paths and Circuits 

■  A, B, C, B, E  is another path from A to E. This path is only possible 
because there!

 are two edges connecting 
B and C.!
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■ A, C, B, E, E, D  is a path of length 5 from A to D. One of the edges 
in this path is the loop EE. 

Example         Paths and Circuits 

■  A, B, C, B, A, D  is not a path because the edge AB is traveled twice.!
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■ A, B, C, B, E, E, D, A, C, B  is not a path because the edge BC  is 
traveled three times. !

The first two passes are fine, since there are two edges connecting B and!

 C, but a third pass requires that we travel !

Example Paths and Circuits 

 through one of those 
edges a second time.!
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■ B, C, B  is a circuit of length 2. Circuits of length 2 are possible when 
there are multiple edges.!

Example  Paths and Circuits 

■  The EE loop is considered to be a circuit of length 1.!
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A graph is connected if you can get from any vertex to any other 
vertex along a path. Essentially, this means that the graph is all in one 
piece. !

Example       Connectedness and Bridges  

The graph shown 
in here is a 
connected graph.!

39!



Whereas the graphs 
shown in here is a 
disconnected 
graphs.

Example    Connectedness and Bridges 
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A disconnected graph is made up of separate connected 
components.

Example   Connectedness and Bridges 

The graph on the right 
is a disconnected graph 
with two components.!
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Here we show a disconnected graph with three components (an isolated 
vertex is a component in and of itself).!

Example    Connectedness and Bridges 
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Below is the graph we 
get when we remove the 
edge BF  from the graph 
above.

Example    Connectedness and Bridges 
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The removal of just one edge from a connected graph can sometimes 
make the graph disconnected. An edge whose removal makes a 
connected graph disconnected is called a bridge. !

Example    Connectedness and Bridges 

Thus, we say that BF  is a bridge in 
the graph on the previous slide. The 
graph has two other bridges–!
FG and FH.!
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An Euler path in a connected graph is a path that travels through all 
the edges of the graph. !

Being a path, edges can only be traveled once, so in an Euler path every 
edge of the graph is traveled once and only once. !

By definition, only a connected graph can have Euler paths, but, of 
course, just being connected is not enough.

Example   Euler Paths and Euler Circuits 
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Much like Euler paths, we can also define Euler circuits. An Euler 
circuit is a circuit that travels through every edge of a connected graph. 
Being a circuit, the trip must end where it started and travel along every 
edge of the graph once and only once.!

A connected graph cannot have both an Euler path and an Euler circuit–it 
can have one or the other or neither.!

Example    Euler Paths and Euler Circuits 
46!



In the graph shown here, the path C, A, B, 
E, A, D, B, C, D travels along each of the 
eight edges of the graph and is therefore 
an Euler path. !

This graph has several other Euler paths–
you may want to try to find one that does 
not start at C.!

Example     Euler Paths and Euler Circuits 
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In the graph shown here, the circuit C, A, B, E, 
A, D, B, C, D, F, C is an Euler circuit (one of 
many). !
You may want to find a different one. 
(Remember that traveling the edges in the 
same sequence but using a different starting 
point is cheating–you are rewriting the same 
circuit.)!

Example   Euler Paths and Euler Circuits 
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The graph shown here has neither an Euler path nor an Euler circuit. (We will learn 
how to tell that a graph has neither an Euler path nor an Euler circuit later.)!

Example     Euler Paths and Euler Circuits 
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Certain types of problems can be conveniently rephrased as graph 
problems.!

The notion of using a mathematical concept to describe and solve a 
real-life problem is one of the oldest and grandest traditions in 
mathematics. It is called modeling.!

Modeling 
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Here is a map of the seven bridges (shown in red) of a city called 
Königsberg. !

Example: The Seven Bridges of Königsberg 

Is it possible to take a stroll 
through the city of 
Königsberg and cross each 
of the seven bridges once 
and only once.  

51!



This map is not entirely accurate–the drawing is not to scale and the 
exact positions and
angles of some of the 
bridges are changed. !
Does it matter?? 

Example: The Seven Bridges of Königsberg 
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The only thing that truly matters to the solution of this problem is the 
relationship between land masses (islands and banks) and bridges. 
Which land masses are!

connected to each other and by 
how many bridges? This 
information is captured by the red 
edges.). 

Example: The Seven Bridges of Königsberg 
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Thus, when we strip the map of all its superfluous information, we end up 
with the
graph model shown here.!

The four vertices of the graph 
represent each of the four land 
masses; the edges represent the 
seven bridges.!

Example: The Seven Bridges of Königsberg 
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In this graph an Euler circuit would represent a stroll around the town 
that crosses each!
bridge once and ends back at the 
starting point; an Euler path 
would represent a stroll that 
crosses each bridge once but does 
not return to the starting point.!

Example: The Seven Bridges of Königsberg 
55!



Recall the problem of the 
security guard who needs to 
walk the streets of the 
Sunnyside neighborhood.

Example   Walking the ‘Hood: Part 2 
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The graph– where each edge 
represents a block of the 
neighborhood and each 
vertex an intersection–is a 
graph model of this problem.

Example   Walking the ‘Hood: Part 2 
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Does the graph have an 
Euler circuit? An Euler path? 
Neither?!

(These are relevant questions 
that we will learn how to 
answer in the next section.)!

Example   Walking the ‘Hood: Part 2 
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Example:   Delivering the Mail!

A mail carrier 
has to deliver 
mail in the 
same 
Sunnyside 
neighborhood. !



The difference between the mail carrier’s route and the security guard’s 
route is that the mail carrier must make two passes through blocks with 
houses on both sides of the street and only one pass through blocks with 
houses on only one side of the street; !

and where there are no homes on either side of the street, the mail 
carrier does not have to walk at all.!

Example Delivering the Mail 



Recall that unlike the security guard, the mail carrier must make two 
passes through every block that has homes on both sides of the street(she 
has to physically place the mail in the mailboxes), must make one pass 
through blocks that have homes on only one side of the street, and does 
not have to walk along blocks where there are no houses. !

Example    Delivering the Mail 



In this situation an appropriate 
graph model requires two edges 
on the blocks that have homes 
on both.!
sides of the street, one edge for 
the blocks that have homes on 
only one side of the street, !
and no edges for blocks having no homes !
on either side of the street. The graph here models 
this situation.!

Example    Delivering the Mail 



In this section we are going to develop the basic theory that will allow 
us to determine if a graph has an Euler circuit, an Euler path, or 
neither. !

This is important because, as we saw in the previous section, what are 
Euler circuit or Euler path questions in theory are real-life routing 
questions in practice. !

The three theorems we are going to see next (all thanks to Euler) are 
surprisingly simple and yet tremendously useful. !

Euler’s Theroems 



■ If a graph is connected and every 
vertex is even, then it has an Euler 
circuit (at least one, usually more).

■ If a graph has any odd vertices, then 
it does not have an Euler circuit. 

EULER’S CIRCUIT THEOREM 



Here is how we can use Euler’s circuit theorem. !

First we make sure the graph is connected. (If it isn’t, then no matter 
what else, an Euler circuit is impossible.) !

If the graph is connected, then we start checking the degrees of the 
vertices, one by one. !

As soon as we hit an odd vertex, we know that an Euler circuit is out of 
the question. If there are no odd vertices, then we know that the 
answer is yes–the graph does have an Euler circuit! !

How to Use the Theorem 



This  graph cannot have an Euler circuit for the simple reason that it is 
disconnected.!

Illustration using the Theorem 



This graph is connected, but we can quickly spot odd vertices (C is one 
of them; there are others). Thus graph has no Euler circuits.!

Illustration using the Theorem 



This graph is connected and all the vertices are even. Thus this graph 
does have Euler circuits.!

Illustration using the Theorem 



The basic idea behind Euler’s circuit theorem is that as we 
travel along an Euler circuit, every time we go through a 
vertex we use up two different edges at that vertex– one to 
come in and one to go out. !

We can keep doing this as long as the vertices are even. A 
single odd vertex means that at some point we are going to 
come into it and not be able to get out.!

Summary of the Theorem 



■ If a graph is connected and has 
exactly two odd vertices, then it has 
an Euler path (at least one, usually 
more). Any such path must start at 
one of the odd vertices and end at the 
other one.

■ If a graph has more than two odd 
vertices, then it cannot have an Euler 
path. 

EULER’S PATH THEOREM 



Back to the Königsberg bridges problem. Previously, we were able to 
show that the layout of the!

Example The Seven Bridges of 
Königsberg 

bridges in the old city can be modeled 
by the graph shown here.!

This graph has four odd vertices; thus, 
neither an Euler circuit nor an Euler 
path can exist.!



We now have an unequivocal answer to the puzzle: There is no 
possible way anyone can walk across all the bridges without 
having to recross some of them!!

How many bridges will need to be recrossed?!

It depends. If we want to start and end in the same place, we 
must recross at least two of the bridges. !

Example The Seven Bridges of 
Königsberg 



One of the many possible routes is shown in!

Example  The Seven Bridges of 
Königsberg 

here. !

In this route the bridge 
connecting L and D is 
crossed twice, and so is one 
of the two bridges 
connecting A and R.!



If we are allowed to start and end in different !

Example The Seven Bridges of 
Königsberg 

places, we can do it by 
recrossing just one of the 
bridges. !

One possible route is starting 
at A, crossing bridge LD twice, 
and ending at R.!



Here we recall a graph from the child’s play example we discussed 
earlier.!
This graph is connected, and!

Example  Child’s Play 

the vertices are all even. !

By Euler’s circuit theorem we know that 
the graph has an Euler circuit, which 
implies that the original line drawing 
has a closed unicursal tracing. !



Here is another graph from the child’s play example. This graph is  
connected and!

Example Child’s Play 

has exactly two odd vertices (C and D).!

By Euler’s path theorem,the graph has 
an Euler path (open unicursal tracing). 
Moreover, we now know that the path 
has to start at C and end at D, or vice 
versa.!



This  graph has four odd!

Example Child’s Play 

vertices (A, B, C, and D), !

so it has neither an Euler 
path nor an Euler circuit.!



The full power of Euler’s theorems is best appreciated when the graphs 
get bigger. !

Example Child’s Play 

This graph is not 
extremely big, but we can 
no longer “eyeball” an 
Euler circuit or path. !



On the other hand, a quick check of the degrees of the vertices shows that 
K and I are odd vertices and all the rest are even. !

Example          Child’s Play 

An open unicursal tracing is 
possible as!

other one). Starting anyplace else 
will lead to a dead end. Good to 
know!!

long as we start it at K or 
I (and end it at the !



Euler’s circuit theorem deals with graphs with zero odd vertices, 
whereas Euler’s Path Theorem deals with graphs with two or more odd 
vertices. !

The only scenario not covered by the two theorems is that of graphs 
with just one odd vertex. !

Euler’s third theorem rules out this possibility–a graph cannot have 
just one odd vertex. In fact, Euler’s third theorem says much more.!

Euler’s Third Theorem 



■ The sum of the degrees of all the 
vertices of a graph equals twice the 
number of edges (and therefore is an 
even number).

■ A graph always has an even number 
of odd vertices. 

EULER’S SUM OF 
DEGREES THEOREM 



Euler’s sum of degrees theorem is based on the following basic 
observation: !

Take any edge–let’s call it XY. The edge contributes once to the degree 
of vertex X and once to the degree of vertex Y, so, in all, that edge 
makes a total contribution of 2 to the sum of the degrees. !

Thus, when the degrees of all the vertices of a graph are added, the 
total is twice the number of edges.!

Euler’s Sum of Degrees Theorem 



Since the total sum is an even number, it is impossible to have just one 
odd vertex, or three odd vertices, or five odd vertices, and so on. !

To put it in a slightly different way, the odd vertices of a graph always 
come in twos. !

In the next slide, we summarize Euler’s three theorems. !

Euler’s Sum of Degrees Theorem 



Euler’s Sum of Degrees Theorem 



When the graph has an Euler circuit or path, how do we find it?!

For small graphs, simple trial-and-error usually works fine, but real-life 
applications sometimes involve graphs with hundreds, or even 
thousands, of vertices. !

In these cases a trial-and-error approach is out of the question, and 
what is needed is a systematic strategy that tells us how to create an 
Euler circuit or path. In other words, we need an algorithm.

Algorithms 



We will now turn our attention to an algorithm that finds an Euler 
circuit or an Euler path in a connected graph. Technically speaking, 
these are two separate algorithms, but in essence they are identical, so 
they can be described as one.!

The idea behind Fleury’s algorithm can be paraphrased by that old 
piece of folk wisdom: Don’t burn your bridges behind you.!

Fleury’s Algorithm 



In graph theory the word bridge has a very specific meaning–it is the 
only edge connecting two separate sections (call them A and B) of a 
graph.

Fleury’s Algorithm 



Thus, Fleury’s algorithm is based on a simple principle: !

To find an Euler circuit or an Euler path, bridges are the last edges you 
want to cross. !

Our concerns lie only on how we are going to get around the yet-to-be-
traveled part of the graph. Thus, when we talk about bridges that we 
want to leave as a last resort, we are really referring to bridges of the 
to-be-traveled part of the graph. !

Fleury’s Algorithm 



■ Preliminaries. Make sure that the 
graph is connected and either (1) has 
no odd vertices (circuit) or (2) has just 
two odd vertices (path).

■ Start. Choose a starting vertex. [In 
case (1) this can be any vertex; in 
case (2) it must be one of the two odd 
vertices.] 

FLEURY’S ALGORITHM FOR   
FINDING AN EULER CIRCUIT (PATH) 



■ Intermediate steps. At each step, if 
you have a choice, don’t choose a 
bridge of the yet-to-be-traveled part of 
the graph. However, if you have only 
one choice, take it.

■ End. When you can’t travel any more, 
the circuit (path) is complete. [In case 
(1) you will be back at the starting 
vertex; in case (2) you will end at the 
other odd vertex.] 

FLEURY’S ALGORITHM FOR  
FINDING AN EULER CIRCUIT (PATH) 



In implementing Fleury’s algorithm it is critical to separate the past 
(the part of the graph that has already been traveled) from the future 
(the part of the graph that still needs to be traveled). !

While there are many different ways to accomplish this (you are 
certainly encouraged to come up with one of your own), a fairly 
reliable way goes like this: Start with two copies of the graph. !

Copy 1 is to keep track of the “future”; copy 2 is to keep track of the 
“past.” !

Fleury’s Algorithm Bookkeeping 



Every time you travel along an edge, erase the edge from copy 1, but 
mark it (say in red) and label it with the appropriate number on !

copy 2. !

As you move forward, copy 1 gets smaller and copy 2 gets redder. At 
the end, copy 1 has disappeared; copy 2 shows the actual Euler circuit 
or path.!

Fleury’s Algorithm Bookkeeping 



This graph is a very simple graph – it would be easier to find an Euler 
circuit just by trial-and-error than by using Fleury’s algorithm. 
Nonetheless, we will do it using Fleury’s algorithm. !

Example  Implementing Fleury’s 
Algorithm 

The real purpose of the example is to see the 
algorithm at work. 



Start: We can pick any starting point we want. Let’s say we start at F.!

Example Implementing Fleury’s 
Algorithm 



Step 1: Travel from F to C. (Could have also gone from F to D.)

Example  Implementing Fleury’s 
Algorithm 



Step 2: Travel from C to D. (Could have also gone to A or to E.)!

Example  Implementing Fleury’s 
Algorithm 



Step 3: Travel from D to A. (Could have also gone to B but not to  F – 
DF is a bridge!)!

Example       Implementing Fleury’s 
Algorithm 



Step 4: Travel from A to C. (Could have also gone to E but not to B – 
AB is a bridge!)!
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Step 5: Travel from C to E. (There is no choice!)!
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Steps 6, 7, 8, and 9: Only 
one way to go!
at each step.!
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We will apply Fleury’s algorithm to the graph below. !
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Euler Paths 



Since it would be a little impractical to show each step of the algorithm 
with a separate picture as we did in previous example, you are going to 
have to do some of the work. Start by making two copies of the graph.!

Example Fleury’s Algorithm for 
Euler Paths 

■ Start. This graph has two odd vertices, E and J. We can pick either 
one as the starting vertex. Let’s start at J.!



■ Step 1. From J we have five choices, all of which are OK. We’ll 
randomly pick K. (Erase JK on copy 1, and mark and label JK with a 1 
on copy 2.)!
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■ Step 2. From K we have three choices (B, L, or H). Any of these 
choices is OK. Say we choose B. (Now erase KB from copy 1 and mark 
and label KB with a 2 on copy 2.) !



■ Step 3. From B we have three choices (A, C, or J). Any of these 
choices is OK. Say we choose C. (Now erase BC from copy 1 and mark 
and label BC with a 3 on copy 2.)!
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■ Step 4. From C we have three choices (D, E, or L). Any of these 
choices is OK. Say we choose L. (EML–that’s shorthand for erase, 
mark, and label.)!



■Step 5. From L we have three choices (E, G, or K). Any of these 
choices is OK. Say we choose K. (EML.) 
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■ Step 6. From K we have only one choice– to H. We choose H. 
(EML.) !



■Step 7. From H we have three choices (G, I, or J). We !
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should not 
choose G, as 
HG is a bridge 
of the yet-to-be-
traveled part of 
the graph (see 
Fig. 5-21). 



■Step 7. Either of the other two choices is OK. Say we!
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 choose 
J. (EML.) 



■Step 8. From J we have three choices (A, B, or I), but we should 
not choose I, as JI has just become a bridge. Either of the other two 
choices is OK. Say we choose B. (EML)!
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■ Step 9 through 13. Each time we have only one choice. From 
B we have to go to A, then to J, I, H, and G.!



■Step 14 through 21. Not to belabor the point, let’s just cut 
to the chase. The rest of the path is given by G, F, E, D, C, E, G, L, E. 
There are many possible endings, and you should find a different 
one by yourself.
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The completed Euler path (one of hundreds of possible ones) is shown in 
the next slide.!
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We will use the term exhaustive route to describe a route that 
travels along the edges of a graph and passes through each and every 
edge of the graph at least once.!

Exhaustive Routes 



Such a route could be an Euler circuit (if the graph has no odd 
vertices) or an Euler path (if the graph has two odd vertices), but for 
graphs with more than two odd vertices, an exhaustive route will have 
to recross some of the edges. This follows from Euler’s theorems.!

We are interested in finding exhaustive routes that recross the fewest 
number of edges. Why? !

Exhaustive Routes 



In many applications, each edge represents a unit of cost. !
The more edges along the route, the higher the cost of the route. In an 
exhaustive route, the first pass along an edge is a necessary expense, 
part of the requirements of the job. !

Any additional pass along that edge represents a wasted expense 
(these extra passes are often described as deadhead travel). !

Thus, an exhaustive route that minimizes cost (optimal exhaustive 
route) is one with the fewest number of deadhead edges.!

Exhaustive Routes 



We are now going to see how the theory developed in the preceding 
sections will help us design optimal exhaustive routes for graphs with 
many (more than two) odd vertices. !

The key idea is that we can turn odd vertices into even vertices by 
adding “duplicate” edges in strategic places. This process is called 
eulerizing the graph. 

Eulerizing Graphs 



The graph represents a 3 block by 3 block street grid consisting of 24 
blocks. !

How can we find an optimal route that covers all the!

Example  Covering a 3 by 3 Street Grid 

edges of the graph and ends back at the 
starting vertex? Our first step is to identify 
the odd vertices. This graph has eight odd 
vertices (B, C, E, F, H, I, K, and L), shown in 
red.!



When we add a duplicate copy of edges BC, EF, HI, and KL, we get this 
graph. This is a eulerized version of the original graph–its !

vertices are all even, so we know it has an 
Euler circuit. Moreover, it’s clear we couldn’t 
have done this with fewer than four 
duplicate edges!
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This figure shows one of the many possible Euler circuits, with the edges 
numbered in the order they are traveled. The Euler circuit represents an 
exhaustive closed route along!

the edges of the original graph, with the 
four duplicate edges (BC, EF, HI, and KL) 
indicating the deadhead blocks where a 
second pass is required. 
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The total length of this route is 28 blocks (24 blocks in the grid plus 4 
deadhead blocks), and this route is optimal–no matter how clever you 
are or how hard you try, !

if you want to travel along each block of the 
grid and start and end at the same vertex, 
you will have to pass through a minimum of 
28 blocks!!
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The graph represents a 4 block by 4 block street grid consisting of 40 
blocks. The 12 odd vertices in the graph are shown in!

Example   Covering a 4 by 4 Street 
Grid 

red. We want to eulerize 
the graph by adding the 
least number of edges. 



This figure shows how not to do it! This graph violates the cardinal rule of 
eulerization–you can only duplicate edges that are part of!
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the original graph. Edges 
DF and NL are new edges, 
not duplicates, so this 
figure is out! 



This figure shows a legal eulerization, but it is not optimal, as it is 
obvious that we could have accomplished the same thing by!
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adding fewer duplicate edges.!



This figure shows an optimal eulerization of the original graph–one of 
several possible. Once we have an optimal eulerization, we have the 
blueprint for an optimal exhaustive!
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closed route on the original graph. Regardless 
of the specific details, we now know that the 
route will travel along 48 blocks–the 40 
original blocks in the grid plus 8 deadhead 
blocks.!



In some situations we need to find an exhaustive route, but there is no 
requirement that it be closed–the route may start and end at different 
points. !

In these cases we want to leave two odd vertices on the graph 
unchanged and change the other odd vertices into even vertices by 
duplicating appropriate edges of the graph.!

Open Route 



This process is called a semi-eulerization of the graph. !

When we strategically choose how to do this so that the number of 
duplicate edges is as small as possible, we can obtain an optimal 
exhaustive open route. !

In this case the route will start at one of the two odd vertices and end 
at the other one. !

Semi-eulerization 



Let’s consider once again the 4 by 4 street grid. Imagine that your job is 
to design a good route for a Fourth of July parade that must pass through 
each of the 40 blocks of the street grid. !

Example  Parade Route 

The key is that when routing a parade, you do 
not want the parade to start and end in the 
same place. !

In fact, for traffic control it is usually 
desirable to keep the starting and ending 
points of a parade as far from each other as 
possible.!



The fire department has added one additional requirement to the parade 
route: The parade has to start at B. !
Your task, then, is to find a semi-eulerization of the graph that leaves B 
and one more odd vertex unchanged!
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(preferably a vertex far from B) and that 
changes all the other odd vertices into even 
vertices.!



This semi-eulerization is optimal because it required only six duplicate 
edges, and this is as good as one can do. The optimal parade route could 
be found by finding an Euler path. !
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The only bad thing about this route is 
that the parade would end at P, a point 
a bit too close to the starting point, and 
the traffic control people are unhappy 
about that.!



A different semi-eulerization is shown here. The parade route in this case 
would not be optimal (it has seven deadhead blocks), !
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but because it ends at K, it better 
satisfies the requirement that the 
starting and ending points be far apart. 
The traffic control folks are happy now.!



A photographer needs to take photos of each of the 11 bridges in Madison 
County.!
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A graph model of the layout (vertices represent land masses, edges 
represent bridges) is shown.!
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The graph has four odd vertices (R, L, B, and D), so some bridges are 
definitely going to have to be recrossed.!
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How many and which ones depends on the other parameters of the 
problem. (It costs $25 in toll fees to cross a bridge, so the baseline cost 
for crossing the 11 bridges is $275. !

Each recrossing is at an additional cost of $25.) The following are a few 
of the possible scenarios one might have to consider. 

Each one requires a different eulerization and will result in a different 
route.!
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The photographer needs to start and end his trip in the same 
place. This scenario requires an optimal eulerization of the 
graph.!
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This is not hard to do, 
and an optimal route 
can be found for a cost 
of $325.!



The photographer has the freedom to choose any starting and ending 
points for his trip. In this case we can find an optimal semi-!
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eulerization of the 
graph, requiring only 
one duplicate edge. Now 
an optimal route is 
possible at a cost of 
$300.!



The photographer has to start his trip at B and end the trip at L. In this 
case we must find a semi-eulerization of the graph where B and L remain 
as odd vertices and R and D !
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become even vertices. It is possible 
to do this with just two duplicate 
edges and thus find an optimal 
route that will cost $325. !



Earlier we raised the question of finding!

Example  The Exhausted Patrol 
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an optimal exhaustive closed 
route for a security guard hired 
to patrol the streets of the 
Sunnyside subdivision and we 
created the graph model for this 
problem.!



The graph has 18 odd vertices, shown in red. We now know that the name 
of the game is to find an optimal eulerization of this graph. !
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In this case the odd vertices pair 
up beautifully, and the optimal 
eulerization requires only nine !
duplicate edges, shown here.!



All the answers to the security guards questions can now be answered: An 
optimal route will require nine deadhead blocks.!
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The actual route can be found 
using trial and error or Fleury’s 
algorithm.!



A slightly different problem is the one facing the mail carrier delivering 
mail along the streets of the Sunnyside subdivision.!
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Much to the mail carrier’s 
pleasant surprise, in the graph 
that models her situation all the 
vertices are even.!



This means that the optimal route is an Euler circuit, which can be found 
once again using Fleury’s algorithm (or trial and error if you!
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prefer). This mail carrier will not 
have to deadhead.!


