Distributions practice [136 marks]

$1 a$.

Markscheme

sketch of normal curve with shaded region to the right of the mean and correct values (M1)

0.0921 ($0.0920950 \ldots$...) A1
[2 marks]

1b.

Markscheme

EITHER

($\mathrm{P}(x<172))$
0.906200...
(A1)
(0.906200...-0.68)
0. 226200 ...
(A1)

OR
$(\mathrm{P}(163<x<172))$
0. 406200 ...
(A1)
$0.5-(0.68-0.406200 \ldots)$ OR $0.5+(0.68-0.406200 \ldots)$
0.226200... OR 0.773799...
(A1)

OR

(A1)(A1)

Note: Award $\boldsymbol{A 1}$ for a normal distribution curve with a vertical line on each side of the mean and a correct probability of either 0.406 or 0.274 or 0.906 shown, $\boldsymbol{A 1}$ for a probability of 0.226 seen.

THEN

$(k=) 158 \mathrm{~g}(157.867 \ldots \mathrm{~g}) \quad \boldsymbol{A 1}$
[3 marks]
$2 a$.
Markscheme
$(\mathrm{E}(X)=) 10 \times 0.8 \quad$ (M1)
8 (people) A1
[2 marks]

2b.
[2 marks]

Markscheme

recognition of binomial probability (M1)
0.0881 ($0.0880803 \ldots$)
A1
[2 marks]

2c.
Markscheme
0.8 and 6 seen OR 0.2 and 3 seen
(A1)
attempt to use binomial probability
(M1)
0.121 (0.120873...)

A1
[3 marks]
$3 a$.
Markscheme
$\frac{4}{18}\left(\frac{2}{9}\right) \quad$ A1
[1 mark]

3b.

Markscheme

$-3 \times \frac{1}{18}+(-1) \times \frac{4}{18}+0 \times \frac{3}{18}+\ldots+5 \times \frac{7}{18} \quad$ (M1)
Note: Award (M1) for their correct substitution into the formula for expected value.
$=1.83\left(\frac{33}{18}, 1.83333 \ldots\right) \quad$ A1
[2 marks]
$3 c$.

Markscheme

$2 \times \frac{1}{18} \times \frac{3}{18} \quad$ (M1)(M1)
Note: Award (M1) for $\frac{1}{18} \times \frac{3}{18}$, award (M1) for multiplying their product by 2 .
$=\frac{1}{54}\left(\frac{6}{324}, 0.0185185 \ldots, 1.85 \%\right) \quad \boldsymbol{A 1}$
[3 marks]
$4 a$.

Markscheme

Let X be the random variable "distance from O ".
$X \sim \mathrm{~N}\left(10,3^{2}\right)$
$\mathrm{P}(X<13)=0.841$ (0.841344 $\ldots)$
(M1)(A1)
[2 marks]

4b.
Markscheme
$(\mathrm{P}(X>15)=) 0.0478(0.0477903)$
A1

4c.

Markscheme

$\mathrm{P}(X>15) \times \mathrm{P}(X>15)$
(M1)
$=0.00228(0.00228391 \ldots) \quad$ A1

[2 marks]

4d.

Markscheme

$1-(0.8143)^{3} \quad$ (M1)
0.460 ($0.460050 \ldots$) A1
[2 marks]

4 e.

Markscheme

METHOD 1

let Y be the random variable "number of points scored"
evidence of use of binomial distribution
(M1)
$Y \sim \mathrm{~B}(10,0.539949 \ldots)$
(A1)
$(\mathrm{P}(Y \geq 5)=) 0.717$ ($0.716650 \ldots) . \quad$ A1

METHOD 2

let Q be the random variable "number of times a point is not scored" evidence of use of binomial distribution
$Q \sim \mathrm{~B}(10,0.460050 \ldots) \quad$ (A1)
$(\mathrm{P}(Q \leq 5)=) 0.717(0.716650 \ldots)$
A1
[3 marks]

4 .
Markscheme
$\mathrm{P}(5 \leq Y<8) \quad$ (M1)
0.628 ($0.627788 \ldots$)

A1

Note: Award M1 for a correct probability statement or indication of correct lower and upper bounds, 5 and 7 .

[2 marks]

4 g .

Markscheme

$\frac{\mathrm{P}(5 \leq Y<8)}{\mathrm{P}(Y \geq 5)}\left(=\frac{0.627788 \ldots}{0.716650 \ldots}\right)$
(M1)
0.876 ($0.876003 \ldots$...) A1
[2 marks]
$5 a$.

Markscheme

t	1	2	3	4	5	6
$\mathrm{P}(T=t)$	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{5}{36}$	$\frac{7}{36}$	$\frac{9}{36}$	$\frac{11}{36}$
$(0.027777 \ldots)$	$(0.083333 \ldots)$	$(0.138888 \ldots)$	$(0.194444 \ldots)$	(0.25)	$(0.305555 \ldots)$	

Note: Award A1 if three to five probabilities are correct.
[2 marks]

5b.
Markscheme
$\frac{32}{36}\left(\frac{8}{9}, 0.888888 \ldots, 88.9 \%\right)$ (A1)

[1 mark]

5c.

Markscheme

use of conditional probability (M1)
e.g. denominator of 32 OR denominator of $0.888888 \ldots$. etc.
$\frac{11}{32}(0.34375,34.4 \%) \boldsymbol{A 1}$
[2 marks]

5d.
Markscheme
$\frac{1 \times 1+3 \times 2+5 \times 3+\ldots+11 \times 6}{36}$ (M1)
$=\frac{161}{36}\left(4 \frac{17}{36}, 4.47,4.47222 \ldots\right) \boldsymbol{A 1}$
[2 marks]
$6 a$.

Markscheme

evidence of correct probability (M1)
e.g sketch OR correct probability statement, $\mathrm{P}(X<6.5)$
0.0151 A1
[2 marks]

6b.

Markscheme

0.0228 A1

Note: Answers should be given to 4 decimal place.

[1 mark]

$6 c$.

Markscheme

multiplying their probability by 1000 (M1)
451.7 A1
[2 marks]
$6 d$.

Markscheme

510.5 A1

Note: Answers should be given to 4 sf.
[1 mark]
$6 e$.

Markscheme

H_{0} : stopping distances can be modelled by $\mathrm{N}\left(6.76,0.12^{2}\right)$
H_{1} : stopping distances cannot be modelled by $\mathrm{N}\left(6.76,0.12^{2}\right)$ A1A1
Note: Award $\boldsymbol{A 1}$ for correct H_{0}, including reference to the mean and standard deviation. Award $\boldsymbol{A 1}$ for the negation of their H_{0}.

6 f.

Markscheme

15.1 or 22.8 seen (M1)
$0.0727(0.0726542 \ldots, 7.27 \%)$ A2
[3 marks]

6 g .

Markscheme

$0.05<0.0727$ R1
there is insufficient evidence to reject H_{0} (or "accept H_{0} ") $\boldsymbol{A 1}$
Note: Do not award ROA1.

[2 marks]

$7 a$.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.
evidence of summing probabilities to 1 (M1)
eg $\quad q+4 p^{2}+p+0.7-4 p^{2}=1,1-4 p^{2}-p-0.7+4 p^{2}$
$q=0.3-p \quad$ A1 N2
[2 marks]

7b.

Markscheme

correct substitution into $\mathrm{E}(X)$ formula (A1)
eg $\quad 0 \times(0.3-p)+1 \times 4 p^{2}+2 \times p+3 \times\left(0.7-4 p^{2}\right)$
valid approach to find when $\mathrm{E}(X)$ is a maximum (M1)
eg max on sketch of $\mathrm{E}(X), 8 p+2+3 \times(-8 p)=0, \frac{-b}{2 a}=\frac{-2}{2 \times(-8)}$
$p=\frac{1}{8}(=0.125)$ (exact) (accept $x=\frac{1}{8}$) \quad A1 $\mathbf{N 3}$
[3 marks]

7c.

Markscheme

2. 225
$\frac{89}{40}$ (exact), 2.23 A1 N1
[1 mark]

8a.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

(A1)(A1)

Note: Award (A1) for bell shaped curve with mean m or 13.6 indicated. Award (A1) for approximately correct shaded region.
[2 marks]

Markscheme

$\mathrm{P}(T>17.8)=0.3 \quad$ (M1)

OR

Note: Award (M1) for correct probability equation using 0.3 OR correctly shaded diagram indicating 17.8. Strict or weak inequalities are accepted in parts (b), (c) and (d).

$$
\begin{equation*}
\frac{13.6+17.8}{2}\left(17.8-\frac{17.8-13.6}{2}\right) \mathbf{O R}\left(13.6+\frac{17.8-13.6}{2}\right) \tag{M1}
\end{equation*}
$$

Note: Award (MO)(M1) for unsupported $\frac{13.6+17.8}{2}$ OR $\left(17.8-\frac{17.8-13.6}{2}\right)$ OR $\left(13.6+\frac{17.8-13.6}{2}\right)$ OR the midpoint of 13.6 and 17.8 is 15.7 .
Award at most (M1)(MO) if the final answer is not seen. Award (MO)(MO) for using known values $m=15.7$ and $\sigma=4$ to validate $\mathrm{P}(T<17.8)=0.7$ or $\mathrm{P}(T<13.6)=0.3$.
15.7 (AG)
[2 marks]
Markscheme
$\mathrm{P}(13 \leq T \leq 18) \quad$ (M1)

OR

(M1)

Note: Award (M1) for correct probability equation OR correctly shaded diagram indicating 13 and 18.
$0.468(46.8 \%, 0.467516 \ldots) \quad$ (A1)(G2)
[2 marks]

8d.

Markscheme
 $\mathrm{P}(T \geq 20) \quad$ (M1)

OR

(M1)

Note: Award (M1) for correct probability equation OR correctly shaded diagram indicating 20.
$0.141(14.1 \%, 0.141187 \ldots)$
(A1)(G2)
[2 marks]

8 e.

Markscheme
 $\mathrm{P}(T<t)=0.6 \quad$ (M1)

OR

(M1)

Note: Award (M1) for correct probability equation OR for a correctly shaded region with x indicated to the right-hand side of the mean.
16.7 (16.7133...) (A1)(G2)
[2 marks]
$8 f$.

Markscheme

$0.467516 \ldots \times 0.141187 \ldots \times 2$
(M1)(M1)
OR
$(0.467516 \ldots \times 0.141187 \ldots)+(0.141187 \ldots \times 0.467516 \ldots)$

Note: Award (M1) for the multiplication of their parts (c)(i) and (c)(ii), (M1) for multiplying their product by 2 or for adding their products twice. Follow through from part (c).
$0.132(13.2 \%, 0.132014 \ldots) \quad$ (A1)(ft)(G2)
Note: Award (GO) for an unsupported final answer of $0.066007 \ldots$
[3 marks]

8 g .

Markscheme
 $\frac{69}{102} \times 200 \quad$ (M1)

Note: Award (M1) for correct probability multiplied by 200.
135 (135.294...) (A1)(G2)
[2 marks]

8h.

Markscheme

$\left(\frac{67}{98} \times 200=\right) 136.734 \ldots$
(A1)

Note: Award (M1) for 137 or 136.734... seen.
Emlyn is incorrect, $135<137 \quad(135.294 \ldots<136.734 \ldots)$
Note: To award the final (R1), both the conclusion and the comparison must be seen. Award at most (AO)(R1)(ft) for consistent incorrect methods in parts (f) and (g).

OR

$$
\begin{equation*}
\left(\frac{67}{98}=\right) 0.684(0.683673 \ldots) \quad\left(\frac{69}{102}=\right) 0.676(0.676470 \ldots) \tag{A1}
\end{equation*}
$$

Note: Award (A1) for both correct probabilities seen.

Emlyn is incorrect, $0.676<0.684$
Note: To award the final (R1), both the conclusion and the comparison must be seen. Award at most ($\mathbf{A O} \mathbf{)}(\boldsymbol{R 1})(\mathbf{f t})$ for consistent incorrect methods in parts (f) and (g).
[2 marks]
$9 a$.
Markscheme
$0.5\left(\frac{1}{2}, 50 \%\right) \quad$ (A1) (C1)
[1 mark]

9 b .

Markscheme

$\mathrm{P}(X \leq 26) \quad$ (M1)

Note: Award (M1) for a correct mathematical statement.
OR
Award (M1) for a diagram that shows the value 26 labelled to the left of the mean and the correct shaded region.

$3.45(0.344578 \ldots, 34.5 \%) \quad$ (A1) (C2)

[2 marks]

9c.

Markscheme

0.7 OR 0.3 (seen)
(A1)
Note: Award (A1) for 0.7 or 0.3 seen.
$\mathrm{P}($ time $<7)=0.7$ OR $\mathrm{P}($ time $>k)=0.3$
Note: Award (M1) for a correct mathematical statement.
OR
Award (M1) for a diagram that shows k greater than the mean and shading in the region below k, above k, or between k and the mean.

$(k=) 30.6$ (30.6220...) (minutes) (A1) (C3)
Note: Accept " 30 minutes and 37 seconds" or (from 3 sf k value) " 30 minutes and 36 seconds".
[3 marks]

10a.
[2 marks]

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.
recognizing area under curve $=1$
(M1)
eg $a+x+b=1,100-a-b, 1-a+b$
$\mathrm{P}(-1.6<z<2.4)=1-a-b(=1-(a+b))$
A1 N2

[2 marks]

10b.

Markscheme

$\mathrm{P}(z>-1.6)=1-a$ (seen anywhere) (A1)
recognizing conditional probability (M1)
eg $\mathrm{P}(A \mid B), \mathrm{P}(B \mid A)$
correct working
(A1)
eg $\frac{\mathrm{P}(z<2.4 \cap z>-1.6)}{\mathrm{P}(z>-1.6)}, \frac{\mathrm{P}(-1.6<z<2.4)}{\mathrm{P}(z>-1.6)}$
$\mathrm{P}(z<2.4 \mid z>-1.6)=\frac{1-a-b}{1-a} \quad$ A1 N4
Note: Do not award the final $\boldsymbol{A 1}$ if correct answer is seen followed by incorrect simplification.

[4 marks]

10c.

Markscheme

$z=-1.6$ (may be seen in part (d)) A1 N1
Note: Depending on the candidate's interpretation of the question, they may give $\frac{1-m}{s}$ as the answer to part (c). Such answers should be awarded the first (M1) in part (d), even when part (d) is left blank. If the candidate goes on to show $z=-1.6$ as part of their working in part (d), the $\boldsymbol{A 1}$ in part (c) may be awarded.
[1 mark]

10d.

Markscheme

attempt to standardize x (do not accept $\frac{x-\mu}{\sigma}$)
(M1)
eg $\frac{1-m}{s}$ (may be seen in part (c)), $\frac{m-2}{s}, \frac{x-m}{\sigma}$
correct equation with each z-value (A1)(A1)
eg $-1.6=\frac{1-m}{s}, 2.4=\frac{2-m}{s}, m+2.4 s=2$
valid approach (to set up equation in one variable) M1
eg $2.4=\frac{2-(1.6 s+1)}{s}, \quad \frac{1-m}{-1.6}=\frac{2-m}{2.4}$
correct working (A1)
eg $1.6 s+1=2-2.4 s, 4 s=1, m=\frac{7}{5}$
$s=\frac{1}{4} \quad$ A1 N2

[6 marks]

11a.
[2 marks]

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

Mean and standard deviation	Graph
Mean $=-2$; standard deviation $=0.707$	C
Mean $=0 ;$ standard deviation $=0.447$	D

(A1)(A1)
(C2)
Note: Award (A1) for each correct entry.
[2 marks]

Markscheme

(M1)

Note: Award (M1) for sketch with 15 labelled and left tail shaded OR for a correct probability statement, $\mathrm{P}(X<15)$.
0.0766 (0.0765637..., 7.66\%)
(A1) (C2)
[2 marks]

11c.

Markscheme

(M1)

Note: Award (M1) for a sketch showing correctly shaded region to the right of the mean with 19.6% labelled (accept shading of the complement with 80.4% labelled) OR for a correct probability statement, $\mathrm{P}(X>k)=0.196$ or $\mathrm{P}(X \leq k)$ $=0.804$.
23.0 (kg) (22.9959...(kg)) (A1) (C2)
[2 marks]

12a.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.
valid approach (M1)
egtotal probability $=1$
correct equation (A1)
$e g 0.475+2 k^{2}+\frac{k}{10}+6 k^{2}=1,8 k^{2}+0.1 k-0.525=0$
$k=0.25 \quad$ A2 \quad N3
[4 marks]

12b.

Markscheme
 $\mathrm{P}(X=2)=0.025 \quad$ A1 \quad N1

[1 mark]

12c.

Markscheme

valid approach for finding $\mathrm{P}(X>0) \quad$ (M1)
$e g 1-0.475,2\left(0.25^{2}\right)+0.025+6\left(0.25^{2}\right), 1-\mathrm{P}(X=0), 2 k^{2}+\frac{k}{10}+6 k^{2}$
correct substitution into formula for conditional probability (A1)
eg $\frac{0.025}{1-0.475}, \frac{0.025}{0.525}$
0.0476190
$\mathrm{P}(X=2 \mid X>0)=\frac{1}{21}$ (exact), $0.0476 \quad$ A1 \quad N2
[3 marks]
$13 a$.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.
evidence of binomial distribution (may be seen in part (b)) (M1)
egnp, 150×0.08
$k=12 \quad$ A1 \quad N2
[2 marks]

13b.

Markscheme

$\mathrm{P}(X=12)=\binom{150}{12}(0.08)^{12}(0.92)^{138} \quad$ (A1)
0.119231
probability $=0.119 \quad$ A1 \quad N2
[2 marks]

13c.

Markscheme

recognition that $X \leqslant 11 \quad$ (M1)
0.456800
$\mathrm{P}(X<12)=0.457 \quad$ A1 N2
[2 marks]

14a.
Markscheme
$\frac{6}{15}\left(0.4, \frac{2}{5}\right) \quad \boldsymbol{A 1}$
[1 mark]

14b.
Markscheme
$\mathrm{P}(X=8) \quad$ (M1)
Note: Award (M1) for evidence of recognizing binomial probability. eg $\mathrm{P}(X=$ 8), $X \sim B\left(20, \frac{6}{15}\right)$.
0.180 (0.179705...) A1
[2 marks]

14c.

Markscheme

$\mathrm{P}($ male $)=\frac{9}{15}(0.6) \quad \boldsymbol{A 1}$
$\mathrm{P}(X \leq 9)=0.128$ ($0.127521 \ldots$) (M1)A1
Note: Award (M1) for evidence of correct approach eg, $\mathrm{P}(X \leq 9)$.
[3 marks]

15a.

Markscheme

valid approach to find P (one red) (M1)
eg ${ }_{n} C_{a} \times p^{a} \times q^{n-a}, ~ B(n, p), 3\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^{2},\binom{3}{1}$
listing all possible cases for exactly one red (may be indicated on tree diagram)
$\mathrm{P}(1$ red $)=0.444\left(=\frac{4}{9}\right) \quad[0.444,0.445] \quad$ A1 N2
[3 marks] [5 maximum for parts (a.i) and (a.ii)]

15b.

Markscheme

valid approach (M1)
eg $\mathrm{P}(X=2)+\mathrm{P}(X=3), 1-\mathrm{P}(X \leq 1)$, binomcdf $\left(3, \frac{1}{3}, 2,3\right)$
correct working (A1)
eg $\frac{2}{9}+\frac{1}{27}, \quad 0.222+0.037,1-\left(\frac{2}{3}\right)^{3}-\frac{4}{9}$
0.259259
$\mathrm{P}($ at least two red $)=0.259\left(=\frac{7}{27}\right) \quad$ A1 N3
[3 marks] [5 maximum for parts (a.i) and (a.ii)]

15c.

Markscheme

recognition that winning $\$ 10$ means rolling exactly one green
recognition that winning $\$ 10$ also means rolling at most 1 red

correct approach
 A1

eg $\mathrm{P}(1 \mathrm{G} \cap 0 \mathrm{R})+\mathrm{P}(1 \mathrm{G} \cap 1 \mathrm{R}), \mathrm{P}(1 \mathrm{G})-\mathrm{P}(1 \mathrm{G} \cap 2 \mathrm{R})$, "one green and two yellows or one of each colour"
Note: Because this is a "show that" question, do not award this A1 for purely numerical expressions.
one correct probability for their approach
eg $3\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)^{2}, \frac{6}{27}, 3\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^{2}, \frac{1}{9}, \frac{2}{9}$
correct working leading to $\frac{1}{3}$ A1
eg $\frac{3}{27}+\frac{6}{27}, \frac{12}{27}-\frac{3}{27}, \frac{1}{9}+\frac{2}{9}$
probability $=\frac{1}{3} \quad \boldsymbol{A G} \boldsymbol{N} \mathbf{O}$
[5 marks]

15d.

Markscheme

$x=\frac{7}{27}, 0.259$ (check $\boldsymbol{F T}$ from (a)(ii)) \quad A1 N1
[1 mark]

15e.

Markscheme

evidence of summing probabilities to 1 (M1)
eg $\sum=1, x+y+\frac{1}{3}+\frac{2}{9}+\frac{1}{27}=1,1-\frac{7}{27}-\frac{9}{27}-\frac{6}{27}-\frac{1}{27}$
0.148147 (0.148407 if working with their x value to 3 sf)
$y=\frac{4}{27}$ (exact), $0.148 \quad$ A1 N2
[2 marks]
$15 f$.

Markscheme

correct substitution into the formula for expected value
$e g-w \cdot \frac{7}{27}+10 \cdot \frac{9}{27}+20 \cdot \frac{6}{27}+30 \cdot \frac{1}{27}$
correct critical value (accept inequality)
A1
eg $w=34.2857\left(=\frac{240}{7}\right), w>34.2857$
\$40 A1 N2
[3 marks]

