Chapter 8 / Example 5
 χ^{2} goodness of fit to the normal distribution

The GDC can work out the values of the chi squared statistic and the p-value.

The scores for IQ tests are normally distributed with a mean of 100 and standard deviation of 10. Cinzia gives an IQ test to all 200 IB Diploma Programme students in the school. Her results are shown in the table. Cinzia wants to test if these results are also normally distributed and performs a χ^{2} goodness of fit test at the 10% significance level.
a Write down her null and alternative hypotheses

Score, x	Frequency
$x<90$	5
$90 \leq x<100$	14
$100 \leq x<110$	74
$110 \leq x<120$	58
$120 \leq x<130$	34
$130 \leq x$	15

b Find the expected values.
c If any expected values are less than 5 then rewrite both tables.
d Write down the number of degrees of freedom.
The critical value is 6.251 .
e Find the χ^{2} test statistic and thepvalue, and state the conclusion for the test.
First you will enter the observed frequencies in a list.
Press stat 1:Edit and press enter
Enter the frequencies in the first column.
Press enter or after each number to move to the next cell.
Note: If the list contains other numbers, you can clear it by pressing stat 4:CIrList and press enter. The home screen displays CIrList. Press 2nd 1 [LI] and press enter. Press stat 1:Edit and press enter to return to the table.

To calculate the expected values, you will use the normal cdf function.

Press 2nd vars ([distr]) 2: normalcdf(.
The lower limit is -1 E 99 which means -1×10^{99} - a very small number. The upper limit is $90, \mu$ is 100 and σ is 10 .

To enter E press 2nd \square ($[E E]$).
Navigate to Paste and press enter.

Multiply the answer by 200 (type \times 200).


```
normalcdf
lower:|1E99
upper:90
\mu:100
\sigma:10
Paste
```

normalcdf(-1E99, 90, 100,10)
normalcdf(-1E99,90,100,10)
Ans*200................158655? 2596 31.73105191

Chapter 8 / Example 5
 χ^{2} goodness of fit to the normal distribution

Press stat 1:Edit and press enter
Press \square to move to the first cell in the second column.
Press 2nd (-9 ([ans]) and press enter
This will enter the expected score.

Repeat the process to calculate the other expected frequencies and enter them all in the second column.

The final interval $130 \leq x$ has lower limit 130 and upper limit 1E99.

There are now 6 entries in each of the lists.

The last two scores are both less than 5, even when added together, and so you will have to combine them with the one above. You will also have to combine the observed frequencies.

Press 2nd [quit] to enter the home screen.
Type $L_{2}(4)+L_{2}(5)+L_{2}(6) s L_{2}(4)$
and $\mathrm{L}_{1}(4)+\mathrm{L}_{1}(5)+\mathrm{L}_{1}(6)$ sto $\rightarrow \mathrm{L}_{1}(4)$

Press stat 1 :Edit and delete the last two entries in each list.
There are now 4 entries so the degrees of freedom is 3 .

Chapter 8 / Example 5
 χ^{2} goodness of fit to the normal distribution

Press 2nd [quit] to enter the home screen.

x^{2} GOF-TESt

Observed:L1
Expected:L2
df:3!
Color: BLUE
Calculate Draw

Select L_{1} as the observed list, L_{2} as the expected list and enter 3 for df.

Use \square to navigate down to Calculate. Press enter.

The X^{2} statistic is 245 and the p-value is 9.23×10^{-53}.
Since $9.23 \times 10^{-53}<0.1$ or $245>6.251$, the null hypothesis is rejected: the scores are not normally distributed with mean of x^{2} GOF-TESt
$x^{2}=244.6847881$
$p=9.233813 \mathrm{E}-53$
$\mathrm{df}=3$
CNTRB $=\{22.51892368$ 43.13...

