Chapter 8 / **Example 6** χ^2 goodness of fit to the binomial distribution

The GDC can work out the values of the chi squared statistic and the *p*-value.

Using what you learned in Chapter 7, find the probability when you toss three coins of obtaining: 0 heads, exactly 1 head, exactly 2 heads, 3 heads. Hagar tosses three coins 200 times and makes a note of the number of heads each time. Her results are as follows.

Number of heads	Frequency
0	28
1	67
2	83
3	22

She is interested in finding out if her results follow a binomial distribution and performs a χ^2 goodness of fit test at the 5% significance level.

- **a** Using the terms of B(3, 0.5) and the fact that Hagar tossed the coins 200 times, find the expected values for the number of heads.
- **b** Comment on whether any of these values are less than 5.
- **c** Write down the null and alternative hypotheses and the degrees of freedom. The critical value is 7.815.

L1(5)=

trials:3

⊳:0.5 x value:0

Paste

binompdf

- **d** Find the χ^2 value and the *p*-value.
- e Write down the conclusion for this test.

First you will enter the observed frequencies in a list.

Press Stat 1:Edit and press enter [format]

Enter the frequencies in the first column.

Press enter or rater each number to move to the next cell.

Note: If the list contains other numbers, you can clear it by pressing [stat] 4:ClrList and press [enter]. The home screen displays ClrList. Press [2nd] 1] [L1] and press [enter]. Press [stat] 1:Edit and press [enter] to return to the table.

To calculate the expected values, you will use the binomial pdf function.

Press 2nd vars ([distr]) A:binompdf(.

The number of trials is 3, the probability of success is 0.5 and the first x-value id 0.

Navigate to Paste and press enter.

Chapter 8 / **Example 6** χ^2 goodness of fit to the binomial distribution

Multiply the answer by 200 (type $ imes$ 200) and press enter.	binompdf(3,0.5,0)*200 25
Press Stat 1:Edit and press enter [format] Press to move to the first cell in the second column. Press 2nd (-) ([ans]) and press enter [format] This will enter the expected score.	L1 L2 L3 L4 L5 2 28 25 67 83 22 L2(2)=
Repeat the process to calculate the other expected frequencies and enter them all in the second column.	binomPdf(3,0.5,0)*200 25 binomPdf(3,0.5,1)*200 75 binomPdf(3,0.5,2)*200 75 binomPdf(3,0.5,3)*200 25
There are now 4 entries in each of the lists. None of the values are less than five.	L1 L2 L3 L4 L5 2 28 25 67 75 83 75 22 25
Press 2nd [quit] to enter the home screen. Press Stat. Press \blacktriangleright \blacktriangleright to access the TESTS menu. Select D: χ^2 GOF-Test Select L ₁ as the observed list, L ₂ as the expected list and enter 3 for df. Use \neg to navigate down to Calculate. Press enter.	X2GOF-Test Observed:L1 Expected:L2 df:3 Color: BLUE Calculate Draw
The χ^2 statistic is 2.43 and the <i>p</i> -value is 0.489. Since 0.489 > 0.05 or 2.42 < 7.815, the null hypothesis is accepted. The number of heads follows a binomial distribution.	χ²GOF=Test χ ² =2.426666667 p=.4886899362 df=3 CNTRB={.36 .8533333333