- If $f(t) \geq 0$ is a continuous function, the area enclosed between the graph of $f$ and the $x$-axis over the interval $a \leq t \leq x$ can be found with the definite integral $\int_{a}^{x} f(t) \mathrm{d} t$. Also $\int_{a}^{x} f(t) \mathrm{d} t=F(x)-F(a)$ where $F^{\prime}(x)=f(x)$.
If $F(x)$ is a function where $F^{\prime}(x)=f(x)$, we say that $F(x)$ is an antiderivative of $f$.
 The process of finding an antiderivative is called antidifferentiation.
- If $F^{\prime}(x)=f(x)$ then $\int f(x) \mathrm{d} x=F(x)+c$ where $c \in \mathbb{R}$.

The expression $\int f(x) \mathrm{d} x$ is called an indefinite integral and $\int f(x) \mathrm{d} x$ is read as "the integral of $f$ with respect to $x^{\prime \prime}$.

## HINT

$\mathcal{c}$ is called the constant of integration.

- $\int a x^{n} \mathrm{~d} x=\frac{a x^{n+1}}{n+1}+c$ where $a$ and $n$ are constants, $a \neq 0$ and $n \neq-1$.

This is an integration rule and is called the power rule.

## Developing inquiry skills

Write down any further inquiry questions you could ask and investigate how you could find the areas of irregular shapes and curved shapes.

## Chapter review

1 For each of the following shaded regions:
i Write down a definite integral that represents the area of the region.
ii Hence or otherwise, find the area of these shaded regions.
a

b


2 For each of the following regions:
i Write down a definite integral that represents the area of the region.
ii Hence or otherwise, find the area of these shaded regions.
a

b


3 For each of the following regions:
i Write down a definite integral that represents the area of the region.
ii Find the area of the region.
a

b

c

d

e


g

h



4 For each of the following definite integrals:
i On a diagram shade the region that they represent.
ii Find their value.
a $\int_{0}^{4} \sqrt{x} \mathrm{~d} x$
c $\int_{2.5}^{3}-(x-2)(x-4) \mathrm{d} x$
b $\int_{-2}^{2} x^{2} d x$
d $\int_{2}^{4}-(x-2)(x-4) \mathrm{d} x$
e $\int_{2}^{5} \frac{10}{x+1} \mathrm{~d} x$
f $\int_{-1}^{1}\left(3^{x}+2\right) \mathrm{d} x$
g $\int_{-2}^{3}\left(x^{2}-2 x+3\right) \mathrm{d} x$
5 Consider the region $A$ enclosed between the graph of $y=-(x+1)(x-4)$ and the $x$-axis.
a Write down a definite integral that represents the area of $A$.
b Find the value of this area.
6 Consider the curve $y=x(x-4)^{2}$. Let $A$ be the region enclosed between this curve and the $x$-axis.
a Write down the $x$-intercepts of this curve.
b Write down a definite integral that represents the area of $A$.
c Find the value of this area.
7 Consider the curve $y=x^{3}$. Let $A$ be the region enclosed between this curve, the $x$-axis and the vertical line $x=2$.
a Write down the $x$-intercept of this curve.
b Sketch the curve and clearly label $A$.
c Write down a definite integral that represents the area of $A$.
d Find the value of this area.
8 Consider the graph of the function $f(x)=(x+2)^{2}+1$.
The region bounded by the graph of $f$, the $x$-axis, the $y$-axis and the vertical line $x=b$ with $b>0$ has an area equal to 42 .
a Sketch the region.
b Find the value of $b$.

9 The table below shows the coordinates $(x, y)$ of five points that lie on a curve $y=f(x)$.

| $\boldsymbol{x}$ | 1 | 3.25 | 5.5 | 7.75 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ | 3 | 9 | 7 | 12 | 5 |

Estimate the area under the curve over the interval $1 \leq x \leq 10$.

10 Estimate the area under the graph of
$f(x)=\sqrt{x-2}$ over the interval $2 \leq x \leq 4$ using five trapezoids. Give your answer correct to four significant figures.

11 Consider the graph of the function $f(t)=-t^{2}+2 t$ where $f(t) \geq 0$.
a Draw the graph of the function $f$ and shade the area enclosed between this graph and the $t$-axis over the interval $0 \leq t \leq x$.
b Find an expression for the area under the graph of $f$ over the interval $0 \leq t \leq x$.

12 Consider the graph of the function $f(t)=4 t$ over the interval $3 \leq t \leq x$. Find $\int_{3}^{x} 4 t \mathrm{~d} t$.
13 Calculate $\int(2+x) \mathrm{d} x$.
14 Find $\int\left(1+x-\frac{x^{3}}{4}\right) \mathrm{d} x$.
15 Line $L$ passes through the points ( $-0.25,0$ ) and $(1,10)$. Consider the region bounded by the graph of line $L$ for $-0.25 \leq x \leq 1$, the curve $y=(x-4)^{2}+1$ for $1 \leq x \leq 6$ and the $x$-axis. The region is shown below.

a Find the area under the graph of $L$ for $-0.25 \leq x \leq 1$.
b Write down an expression for the area under the curve $y=(x-4)^{2}+1$ for $1 \leq x \leq 6$.
c Hence, find the area of the shaded region.

16 The diagram shows the graph of three linear functions, $g, f$ and $h$.

a Find the equation of each of these functions.
The three functions are antiderivatives of $y=t(x)$.
b Find the equation of $y=t(x)$.
c Find $\int t(x) \mathrm{d} x$.
17 Estimate the area under the graph of $y=f(x)$ in the interval $1.5 \leq x \leq 5$ using the data points given in the diagram.


18 a Estimate the area $A$ under the graph of $f(x)=\mathrm{e}^{-x^{2}}$ over the interval $0 \leq x \leq 1$ using five trapezoids. Give your answer correct to four significant figures.
b i Write down a definite integral that represents $A$.
ii Hence, find the actual area. Give your answer correct to four significant figures.
c Find the percentage error made with the estimation found in part a.

## Exam-style questions

19 P1: Find $\int\left(5-12 x^{2}+4 x^{3}\right) \mathrm{d} x$, simplifying your answer as far as possible. (4 marks)

20 P 1 : The derivative of the function $f$ is given by - $f^{\prime}(x)=\frac{3}{2} x^{2}+x+3$ and the curve $y=f(x)$ passes through the point $\left(-1, \frac{13}{2}\right)$.
Find an expression for $f$.
(6 marks)
21 P2: a Find the coordinates of the points of intersection of the graphs of $y=6 x-x^{2}$ and $y=10-x$.
(4 marks)
b On the same axes, sketch the graphs of $y=6 x-x^{2}$ and $y=10-x$.
(2 marks)
c Find the exact value for the area bounded by the two curves.
(7 marks)
22 P1: A particle $P$ is travelling in a straight line. After $t$ seconds, the particle has velocity $v=0.6 t^{2}+4 t+1 \mathrm{~m} / \mathrm{s}$ for $t \geq 0$.
a Find an expression for the displacement of the particle from the origin after $t$ seconds.
(2 marks)
b Hence, find the distance travelled by the particle during the third second of motion.
(3 marks)
a Using technology or otherwise, find the coordinates of points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D.
(4 marks)
b Show that the shaded area is exactly 10 units $^{2}$. You must show all of your working.
(6 marks)
26 P2: Consider the area enclosed by the curve $y=5-\frac{x^{3}}{25}$ and the positive $x$ - and $y$-axis.
a Sketch the curve, shading the area described above.
b Using the trapezium rule with five strips, determine an approximation for the shaded area.
( 5 marks)
c Explain why your answer to part b will be an underestimate. (2 marks)
d Using integration, determine the exact value of the shaded area.
(4 marks)
25 P1: The diagram below shows an area bounded by the $x$-axis, the line $x=6$, the line $y=2 x-2$ and the curve $y=\frac{36}{x^{2}}$.

Click here for further exam practice

