

• If $f(t) \ge 0$ is a continuous function, the area enclosed between the graph of fand the *x*-axis over the interval $a \le t \le x$ can be found with the definite integral

$$\int_{a}^{x} f(t) dt. \operatorname{Also} \int_{a}^{x} f(t) dt = F(x) - F(a) \text{ where } F'(x) = f(x).$$

If F(x) is a function where F'(x) = f(x), we say that F(x) is an **antiderivative** of f. The process of finding an antiderivative is called **antidifferentiation**.

• If F'(x) = f(x) then $\int f(x) dx = F(x) + c$ where $c \in \mathbb{R}$.

The expression $\int f(x) dx$ is called an **indefinite integral** and $\int f(x) dx$ is read as "the integral of f with respect to x".

HINT

c is called the constant of integration.

• $\int ax^n dx = \frac{ax^{n+1}}{n+1} + c$ where *a* and *n* are constants, $a \neq 0$ and $n \neq -1$.

This is an integration rule and is called the **power rule**.

Developing inquiry skills

Write down any further inquiry questions you could ask and investigate how you could find the areas of irregular shapes and curved shapes.

Chapter review

- **1** For each of the following shaded regions:
 - i Write down a definite integral that represents the area of the region.
 - **ii** Hence or otherwise, find the area of these shaded regions.

- **2** For each of the following regions:
 - **i** Write down a definite integral that represents the area of the region.

Click here for a mixed review exercise

ii Hence or otherwise, find the area of these shaded regions.

Integration f(x) F(x)Differentiation

3 For each of the following regions:

13

- i Write down a definite integral that represents the area of the region.
- **ii** Find the area of the region.

- **4** For each of the following definite integrals:
 - i On a diagram shade the region that they represent.
 - **ii** Find their value.

a
$$\int_{0}^{4} \sqrt{x} \, dx$$
 b $\int_{-2}^{2} x^2 \, dx$
c $\int_{2.5}^{3} -(x-2)(x-4) \, dx$
d $\int_{2}^{4} -(x-2)(x-4) \, dx$
e $\int_{2}^{5} \frac{10}{x+1} \, dx$ **f** $\int_{-1}^{1} (3^x + 2) \, dx$
g $\int_{-2}^{3} (x^2 - 2x + 3) \, dx$

- **5** Consider the region *A* enclosed between the graph of y = -(x + 1)(x 4) and the *x*-axis.
 - **a** Write down a definite integral that represents the area of *A*.
 - **b** Find the value of this area.
- **6** Consider the curve $y = x(x 4)^2$. Let *A* be the region enclosed between this curve and the *x*-axis.
 - **a** Write down the *x*-intercepts of this curve.
 - **b** Write down a definite integral that represents the area of *A*.
 - **c** Find the value of this area.
- Consider the curve y = x³. Let A be the region enclosed between this curve, the *x*-axis and the vertical line x = 2.
 - **a** Write down the *x*-intercept of this curve.
 - **b** Sketch the curve and clearly label *A*.
 - **c** Write down a definite integral that represents the area of *A*.
 - **d** Find the value of this area.
- 8 Consider the graph of the function $f(x) = (x+2)^2 + 1$.

The region bounded by the graph of *f*, the *x*-axis, the *y*-axis and the vertical line x = b with b > 0 has an area equal to 42.

- a Sketch the region.
- **b** Find the value of *b*.

9 The table below shows the coordinates (*x*, *y*) of five points that lie on a curve y = f(x).

x	1	3.25	5.5	7.75	10
y = f(x)	3	9	7	12	5

Estimate the area under the curve over the interval $1 \le x \le 10$.

10 Estimate the area under the graph of

 $f(x) = \sqrt{x-2}$ over the interval $2 \le x \le 4$ using five trapezoids. Give your answer correct to four significant figures.

- **11** Consider the graph of the function $f(t) = -t^2 + 2t$ where $f(t) \ge 0$.
 - **a** Draw the graph of the function *f* and shade the area enclosed between this graph and the *t*-axis over the interval $0 \le t \le x$.
 - **b** Find an expression for the area under the graph of *f* over the interval $0 \le t \le x$.
- **12** Consider the graph of the function f(t) = 4tover the interval $3 \le t \le x$. Find $\int_{1}^{x} 4t \, dt$.
- **13** Calculate $\int (2+x) dx$.

14 Find
$$\int (1+x-\frac{x^3}{4}) dx$$
.

15 Line *L* passes through the points (-0.25, 0) and (1, 10). Consider the region bounded by the graph of line *L* for $-0.25 \le x \le 1$, the curve $y = (x - 4)^2 + 1$ for $1 \le x \le 6$ and the *x*-axis. The region is shown below.

a Find the area under the graph of *L* for $-0.25 \le x \le 1$.

- **b** Write down an expression for the area under the curve $y = (x - 4)^2 + 1$ for $1 \le x \le 6$.
- c Hence, find the area of the shaded region.
- **16** The diagram shows the graph of three linear functions, *g*, *f* and *h*.

Find the equation of each of these а functions.

The three functions are antiderivatives of y = t(x).

- **b** Find the equation of y = t(x).
- **c** Find f(x)dx.
- **17** Estimate the area under the graph of y = f(x) in the interval $1.5 \le x \le 5$ using the data points given in the diagram.

- **18 a** Estimate the area *A* under the graph of $f(x) = e^{-x^2}$ over the interval $0 \le x \le 1$ using five trapezoids. Give your answer correct to four significant figures.
 - **b** i Write down a definite integral that represents A.
 - ii Hence, find the actual area. Give your answer correct to four significant figures.
 - **c** Find the percentage error made with the estimation found in part **a**.

Exam-style questions

19 P1: Find $\int (5-12x^2+4x^3) dx$, simplifying your answer as far as possible. (4 marks) **20 P1:** The derivative of the function *f* is given by Ξ. $f'(x) = \frac{3}{2}x^2 + x + 3$ and the curve y = f(x)passes through the point $\left(-1, \frac{13}{2}\right)$. Find an expression for *f*. (6 marks)

- 21 P2: a Find the coordinates of the points of intersection of the graphs of $y = 6x - x^2$ and y = 10 - x. (4 marks)
 - **b** On the same axes, sketch the graphs of $y = 6x - x^2$ and y = 10 - x.

(2 marks)

c Find the exact value for the area bounded by the two curves.

(7 marks)

- 22 P1: A particle P is travelling in a straight line. After t seconds, the particle has velocity $v = 0.6t^2 + 4t + 1$ m/s for $t \ge 0$.
 - Find an expression for the а displacement of the particle from the origin after t seconds.

(2 marks)

Hence, find the distance travelled by b the particle during the third second of motion. (3 marks)

of
$$y = x^3$$
 and $y = \sqrt[3]{x}$. (2 marks)

c Find an exact value for the total area bounded by the two curves.

(6 marks)

25 P1: The diagram below shows an area

bounded by the *x*-axis, the line x = 6,

the line
$$y = 2x - 2$$
 and the curve $y = \frac{36}{x^2}$.

- Using technology or otherwise, find а the coordinates of points A, B, C and D. (4 marks)
- b Show that the shaded area is exactly 10 units². You must show all of your working. (6 marks)

curve
$$y = 5 - \frac{x^3}{25}$$
 and the positive

x- and *y*-axis.

- Sketch the curve, shading the area а described above. (3 marks)
- **b** Using the trapezium rule with five strips, determine an approximation for the shaded area. (5 marks)
- **c** Explain why your answer to part **b** will be an underestimate. (2 marks)
- **d** Using integration, determine the exact value of the shaded area. (4 marks)
- Find the percentage error of your е approximation, compared with the (2 marks) exact value.

