Name
Period \qquad
Teacher

What i do when im supposed to do my homework

Actually doing homework.
Memecenter

Geometry PAP $6^{\text {th }}$ Six Weeks 2015-2016

MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY
April 4	5	6	7	8
8-3 Rotations CW:pages 8-10 HW: Try rotations about a point that is not the origin.	8-3 Rotations about a point not the origin 8-4 Symmetry CW: pages 11-13 HW:Watch Video Dilations	8-7 Dilations CW:pages 18-20 HW Complete classwork Need for class the next day: red \& blue pen, highlighter, pencil	8-7 Dilations CW: pages 18-20 HW: Complete classwork Need for class the next day: Red \& blue Pen, highlighter, pencil.	Quiz 9.5 Compositions of Transformations CW:pages 14-17 HW: Complete classwork, makes sure EOC \#6 is complete
11	12	13	14	15
Review EOC \#6 Due Formula Quiz \#6	Test \#16 Give out EOC \#7 HW: Watch video Vocabulary with Circles, and video Arcs and Chords	Vocabulary with Circles 12-1 Properties of Tangents CW: pages 4-7 HW: Watch video 12-2 Arcs and Chords	Vocabulary with Circles 12-1 Properties of Tangents CW: pages 4-7 HW: Watch video 12-2 Arcs and Chords	12-2 Arcs and Chords Quiz CW: pages 8-10 HW: Watch video 12-3 Inscribed Angles
18	19	20	21	22
12-3 Inscribed Angles CW: pages 11-13 HW: Watch video 12-4B Special Segments of Circles	12-4B Special Segments of Circles CW: page 14 HW: Watch video 12-4A Angles measures in circles	12-4A Angle Measures in Circles CW: pages 15-18 HW: Watch video 11-4 Graphing Circles	12-4A Angle Measures in Circles CW: pages 15-18 HW: Watch video 11-4 Graphing Circles	11-4 Graphing Circles CW: pages 19-21 HW: Complete classwork, complete EOC \#7, start Review, study for formula quiz.
25	26	27	28	29
Review EOC \#7 Due Formula Quiz	Test \#17 Give out EOC \#8	End of Year Wrksht \#1 End of Year Wrksht \#2	End of Year Wrksht \#1 End of Year Wrksht \#2	End of Year Wksht \#3
May 2	3	4	5	6
End of Year Wksht \#4	End of Year Wksht \#5	End of Year Wksht \#6	End of Year Wksht \#6	End of Year Wksht \#7
9	10	11	12	13
Review EOC \#8 Due Formula Quiz	Test \#18 Give out EOC \#9	Review for final	Review for final	Review for final
$\begin{array}{ll}16 & 1-7\end{array}$	17 1-7	18 1,3,5,7	19 late 2,4,6	20 1-7
Review for final EOC \#9 Due	Review for final Formula Quiz	$\text { Seniors }\left(3^{\text {rd }} \& 5^{\text {th }}\right)$ Review for final	$\begin{aligned} & \text { Seniors }\left(4^{\text {th }} \& 6^{\text {th }}\right) \\ & \text { Review for Final } \end{aligned}$	$7^{\text {th }}$ Final Exam
23	24	25	26	27
$\begin{gathered} 1^{\text {st }} \text { and } 2^{\text {nd }} \text { Final } \\ \text { exam (all) } \end{gathered}$	$3^{\text {rd }} \text { and } 4^{\text {th }} \text { Final }$ Exam	$5^{\text {th }}$ and $6^{\text {th }}$ Final Exam	Teacher Workday	Holiday

Vertex Location	Notes	Diagram	Formula
Center Of Circle	Measure of the angle is equal to the measure of the intercepted arc.		$\measuredangle=\operatorname{arc}$
On the Circle	Measure of the angle is equal to one-half the measure of the intercepted arc.		$\measuredangle=\frac{\operatorname{arc}}{2}$
			$\measuredangle=\frac{\operatorname{arc}}{2}$
In the Circle (not center)	Measure of the angle is equal to one-half the sum of the intercepted arcs(2).		$\measuredangle=\frac{\operatorname{arc}+\operatorname{arc}}{2}$
Outside the Circle	Measure of the angle is equal to one-half the difference of the measures of the intercepted arcs(2).		$\measuredangle=\frac{\operatorname{arc}_{\text {big }}-\operatorname{arc}_{\text {small }}}{2}$
			$\measuredangle=\frac{\operatorname{arc}_{\text {bis }}-\operatorname{arc}_{\text {smal }}}{2}$
			$\measuredangle=\frac{a r c_{b i s}-a r c_{\text {samll }}}{2}$

Worksheet Parts of a Circle

Name \qquad
Circle P has a radius of 3 cm . Circle Q has a radius of 2 cm

1) Name three radii of circle P.
2) If $D E=1 \mathrm{~cm}$, then find $C F$. Explain your answer algebraically.

3) In circle $P, \overrightarrow{G H}$ is what type of line.
4) In circle $Q, \overleftrightarrow{G H}$ is what type of line.
5) If $D E=1 \mathrm{~cm}$ and $A F=3 \frac{1}{2} c \mathrm{~cm}$, find the perimeters of $\triangle A P Q$ and $\triangle A Q F$.

Explain your answers algebraically.
6) $D Q$ is equal to $\frac{1}{2}$ what segment?
7) $\overline{Q A}$ is congruent to what two segments?
8) Circle Q has a radius of $8 \mathrm{~cm}, P$ is in the plane of circle, and $Q P=6 \mathrm{~cm}$. State whether P is inside, on, or outside the circle. Explain you answer.
9) A circle O has a radius of 8 . Find the length of the longest chord of the circle.

Explain your answer.
10) Two concentric circles have a common center P and radii of 7 cm and 11 cm , respectively. Points A, B, C, and D are chosen such that $P A=5 \mathrm{~cm}, P B=8 \mathrm{~cm}$, $P C=10 \mathrm{~cm}$, and $P D=14 \mathrm{~cm}$. State whether each of the points A, B, C, and D is in the interior or exterior of each circle. Explain each of your answers.
11) Circle O has a radius of 4 cm . If radii $\overline{O A}$ and $\overline{O B}$ form a right angle, find $A B$.
12) Circle N has a radius of 10 cm and radii $\overline{N A}$ and $\overline{N B}$ form an angle of 120°. Find $A B$.
13) In the figure, $\overline{A B}$ is a diameter of circle $O, \overline{O C}$ and $\overline{O D}$ are radii, $m \angle D=70^{\circ}$ and $m \angle C=55^{\circ}$. Find the measure of all other angles.

Draw two circles in such a position that each condition is satisfied.
14) Exactly three common tangents can be drawn.

State the best term for the given figure in the diagram.

1. F
2. $\overleftrightarrow{F E}$
3. $\overline{H G}$
4. $\overline{D B}$
5. C
6. $\overline{B E}$
7. $\overleftrightarrow{D B}$

8. $\overleftrightarrow{A G}$

Worksheet 12-1 Tangents and their properties

On 1-5, $\overline{X A}$ and $\overline{X B}$ are tangents segments from the external point X.

1) If $O A=7$ and $X O=25$, find $A X$.
2) If $X A=24$ and $X O=26$, find the radius of the circle.
3) $m \angle A X O=32^{\circ}$. Find $m \angle A X B$.
4) $m \angle A O X=48^{\circ}$. Find $m \angle A X B$.
5) $m \angle A X B=38^{\circ}$. Find $m \angle A O B$.

In 6-8, $\overline{A C}$ is a common external tangent of circle H and circle $\mathrm{E} . \overline{B E}$ and $\overline{A H}$ are radii. $C B=12, B E=5, G F=6$, $A H=15$.
6) Find DC.
7) Find HE .
8) Find $A B$.

In 9-13, ABCD is a circumscribed quadrilateral with $A D=6$.
9) Find x.
10) Find y.
11) Find z.
12) Find $C D$

14) Given: $\overline{X \boldsymbol{U}}, \overline{\boldsymbol{X V}}$, and $\overline{Z Y}$ are tangents to circle $0 . X \boldsymbol{X}=\mathbf{1 7}$ and $\boldsymbol{O U}=\mathbf{8}$, find $\boldsymbol{X Z}+\boldsymbol{Y} \boldsymbol{Z}+\boldsymbol{X} \boldsymbol{Y}$.

15) Find the radius, x.

16) Find the radius, x.

In the diagram, $\overline{B C}$ is a radius of $\odot \boldsymbol{C}$. Determine whether $\overline{A B}$ is tangent to \odot C. Explain your reasoning.
17.
18.

19.

In the diagram, assume that segments are tangents if they appear to be.
Find the value(s) of \boldsymbol{x}.
20.

21.

24.

25.

26. Water Tank You are standing 14 feet from the edge of a cylindrical water tank and 26 feet from a point of tangency. The tank is 10 feet tall. What is the volume of the tank in cubic feet?

27. Pulleys The figure shows a pulley system in which a belt is wrapped around two pulleys so that one can drive the other. $\overline{R S}$ is tangent to $\odot Q$ at R and to $\odot P$ at $S . \overline{Q T}$ is perpendicular to $\overline{S P}$, and Q and P are the centers of the circles. Let $Q R=2 \mathrm{in} ., P S=8 \mathrm{in}$., and $P Q=12 \mathrm{in}$.
a. Write a paragraph proof to show that $Q R S T$ is a rectangle.

b. Find $R S$.
c. Find $m \angle P$.

Worksheet Arcs and Chords 12-2

What can you conclude about the diagram? State a postulate or theorem that justifies your answer.
1.

2.

3.

P is the center of the circle. Use the given information to find $\boldsymbol{X} \boldsymbol{Y}$.
4. $Z Y=3$
5. $Z Y=6, X W=4$
6. $C A=3$

Find the measure of $\overparen{M N}$.
7.

8.

9.

10.

11.

12.

13.

14.

15.

In each circle, O is the center. Find the measure.

1) $P Q$

2) $G H$

3) $X Y$

4) Suppose a chord is 20 inches long and is 24 inches from the center of the circle. Find the length of the radius.
5) Suppose a chord of a circle is 5 inches from the center and is 24 inches long. Find the length of the radius.
6) Suppose the diameter of a circle is 30 centimeters long and a chord is 24 centimeters long. Find the distance between the chord and the center of the circle.

In each circle, O is the center. Find each measure to the nearest tenth.

9) Suppose a chord of a circle is 16 inches long and is 6 inches from the center of the circle. Find the length of a radius.
10) Find the length of a chord that is 5 inches from the center of a circle with a radius of 13 inches.
11) Suppose a radius of a circle is 17 units and a chord is 30 units long. Find the distance from the center of the circle to the chord.
12) Find $\overline{A B}$. (Special Right Triangles)

In $\odot D, \overline{V R}$ and $\overline{Q U}$ are diameters with $\overline{Q U} \perp \overline{P R}$ and $\overline{Q U} \perp \overline{V W}$.
14) Name the midpoint of $\overline{Q U}$.
15) Name the midpoint of $\overline{P R}$.
16) If $\overline{V A}=9$, find $\overline{V W}$.
17) Name two arcs congruent to $Q R$.
18) Explain why $\overline{V W} \| \overline{P R}$.

19) Which chord is longer, $\overline{P R}$ or $\overline{V W}$?
20) If $\overline{D S}=14$ and $\overline{P R}=32$, find $\overline{D R}$ to the nearest tenth.
21) Name two segments congruent to $\overline{D Q}$.
22) Name a segment congruent to $\overline{Q S}$.

In each figure, J is the center of the circle. For 23 and 24 , find x to the nearest tenth.

24)

25) In $\odot R, \overline{T R}=6.4$ and $\overline{E N}=10.8$. Find $\overline{R O}$ to the nearest tenth.

26) In $\odot O, \overline{M O}=6$ and $\overline{L N}=16$. Find x .

Worksheet 12-3 Inscribed Angles

Find the indicated measure.

1. $m \overparen{B C}$

2. $m \angle A$

3. $m \angle C$

4. $m \overparen{A C}$

5. $m \overparen{B C}$

6. $m \angle B$

7. $m \angle A$

8. $m \overparen{B C}$

Find the indicated measure in $\odot O$, given $m C D=85^{\circ}$ and $m B E=97^{\circ}$.
10. $m \angle A B C$
12. $m \angle B D E$
14. $m \angle A B D$
16. $m \overparen{A D}$
18) $m A B=136^{\circ}$

Find $m \angle A C B$.

11. $m \angle C E D$
13. $m \angle C B D$
15. $m \angle B C E$
17. $m \overparen{A B C}$
19) $m \angle D E F=17^{\circ}$ Find $m D F$.

20) $\overline{X Y}$ and $\overline{W Z}$ are perpendicular Diameters. Find $m \angle X W Z$.

21) Circle Puzzle Inscribed and Central Angles

$m \angle 13=$ \qquad $m \angle 14=$ \qquad
$m \angle 16=$ \qquad $m \angle 17=$ \qquad
Given: $\mathrm{m} \overparen{M N}$ on $\odot \mathrm{KL}=35^{\circ}$
$\mathrm{m} \overparen{\mathrm{NO}}$ on $\odot \mathrm{KL}=29^{\circ}$
$\mathrm{m} \overparen{\mathrm{OP}}$ on $\odot \mathrm{KL}=34^{\circ}$
$\mathrm{m} \overparen{\mathrm{PQ}}$ on $\odot \mathrm{KL}=30^{\circ}$
m QL on $\odot \mathrm{KL}=52^{\circ}$ m $\frac{\text { LR }}{}$ on $\odot K L=23^{\circ}$ $\mathrm{m} \overparen{\mathrm{RS}}$ on $\odot \mathrm{KL}=48^{\circ}$

$$
\begin{aligned}
& \mathrm{m} \overparen{\mathrm{ST}} \text { on } \odot \mathrm{KL}=35^{\circ} \\
& \mathrm{m} \overparen{\text { TU }} \text { on } \odot \mathrm{KL}=22^{\circ} \\
& \mathrm{m} \overparen{U V} \text { on } \odot \mathrm{KL}=24^{\circ} \\
& \mathrm{m} \overparen{\mathrm{VM}} \text { on } \odot \mathrm{KL}=28^{\circ}
\end{aligned}
$$

$m \angle 1=$ \qquad
$m \angle 19=$ \qquad $m \angle 20=$ \qquad
$m \angle 18=$ \qquad
\qquad
$m \angle 21=$
22) $\overline{P Q}$ is a diameter.

Find $m \angle P R Q$.

23) $m \angle M N P=70^{\circ}, m \angle Q M N=94^{\circ}$, and $m Q P=85^{\circ}$. Find $m \angle M Q P$ and $m \angle Q P N . \quad \mathrm{M}$

24) $m \angle C=90^{\circ}, m A D=80^{\circ}$, and $m B C=125^{\circ}$. Find $m \angle A, m \angle B$, and $m \angle D$.

Use $\odot O$ at the right for problems 24-35. $m \angle P=24^{\circ}, m \angle Q=18^{\circ}$, and $\overline{T R}$ is a diameter. Find these measures.
24) $m S T$
25) $m Q R$
26) $m \angle S U R$
27) $m T Q$
28) $m \angle P S Q$
29) $m \angle T R S$

Suppose that $m T S=40^{\circ}, m Q R=78^{\circ}$, and $\overline{T R}$ is a diameter. Find these measures in $\odot O$.
30) $m \angle Q S R$
31) $m \angle P$
32) $m \angle T U Q$
33) $m S R$
34) $m \angle Q$
35) $m \angle P S Q$

Use the figure at the right for Problems 36-38
36) $m A B=82^{\circ}$. Find $m \angle B E A$.
37) $m \angle C B E=29^{\circ}$. Find $m \angle C A E$ and $m C E$.
38) $m B E A=290^{\circ}$. Find $m \angle B C A$.

Use the figure at the right for problems 39-41.
39) $m S U=46^{\circ}$. Find $m \angle S W U$.
40) $m \angle R U W=45^{\circ}$. Find $m \angle R S W$ and $m R W$.
41) $m S R U=310^{\circ}$. Find $m \angle S R U$.

Worksheet 12-4 Part B Special Segments in Circles

Chords, secants, and tangents are shown, find x.
1.

4.

7.

8.

6.
5.

In 9-12, Given: chords $\overline{R S}$ and $\overline{T Z}$ intersect at K.
$T K=$ \qquad 9. $R K=6, K S=2, T Z=7$, find $T K$.
$R K=$ \qquad 10. $R S=8, T K=8, K Z=2$, find $R K$.
$K Z=$ \qquad 11. $R K=8, R S=13, T Z=14$, find $K Z$.

$T Z=$ \qquad 12. $R K=8, K S=6, T K=10$, find $T Z$.

In 13-16, secants $\overrightarrow{O A}$ and $\overrightarrow{O B}$ and tangent $\overline{O C}$ are drawn from point O.
$B J=$ \qquad 13. $O J=4, O C=6$, find $B J$.
$O J=$ \qquad 14. $O G=4, G A=8, J B=13$, find $O J$.
$O A=$ \qquad 15. $O J=5, J B=11, G A=16$, find $O A$.
$O C=$ \qquad 16. $J B=5, O J=3 \sqrt{3}$, find $O C$.

Worksheet 12-4A Measurement of Angles

Find the measure of each numbered angle.
1)

Find the value of x.

Assume that lines that appear to be tangents are tangents. In $\odot Q, m \measuredangle C Q D=120^{\circ}, m B C=30^{\circ}$, and $m \measuredangle B E C=25^{\circ}$. Find each measure.
7) $m D C$
8) $m A D$
9) $m A B$
10) $m \measuredangle Q D C$

In $\odot Q, m A E=140^{\circ}, m B D=y^{\circ}, m A B=2 y^{\circ}$, and $m D E=2 y^{\circ}$. Find each measure.
11) $m B D$
12) $m A B$
13) $m D E$
14) $m \measuredangle B C D$

In $\odot P, m B C=4 x-50, m D E=x+25, m E F=x-15, m F B=50$, and $m C D=x$. Find each measure.
15) $m \measuredangle A$
16) $m \measuredangle B C A$
17) $m \measuredangle A B C$
18) $m \measuredangle G B C$
19) $m \measuredangle F H E$
20) $m \measuredangle C F D$

Use the diagram to find the missing information.
21) Find $m \measuredangle 3$

23) Find the value of x and $m \measuredangle A E T$.

25) Find $m \measuredangle 2$,

27) Find the value of x.

22) Find the value of x.

24) Find $m \measuredangle 1$.

26) Find $m \measuredangle 4$.

Worksheet 11-4 Graphing Circles on a Coordinate Plane

Write the standard equation of the circle.

1.

2.

3.

Write the standard equation of the circle with the given center and radius.
5. Center $(0,0)$, radius 9
7. Center $(-3,0)$, radius 5
9. Center $(0,14)$, radius 14
6. Center $(1,3)$, radius 4
8. Center $(4,-7)$, radius 13
10. Center $(-12,7)$, radius 6

Use the given information to write the standard equation of the circle.
8. The center is $(1,3)$, and a point on the circle is $(-4,15)$.
9. The center is $(-5,-2)$, and a point on the circle is $(7,14)$.
10. The center is $(-1,2)$, and a point on the circle is $(47,16)$.

Graph the equation.

11. $(x-3)^{2}+(y+4)^{2}=16$
12. $(x+5)^{2}+(y-7)^{2}=25$

Graph the equation.
21. $x^{2}+y^{2}=64$

Graph the equation.

33. $x^{2}+y^{2}=25$

34. $x^{2}+(y+2)^{2}=9$

35. $(x-4)^{2}+(y+1)^{2}=16$

36. $(x-1)^{2}+y^{2}=4$

37. $(x-3)^{2}+(y+1)^{2}=4$

More 11-4 Circles Graphing and Standard form

Find the center and the radius of the circle.

Examples:

$x^{2}+y^{2}-10 x+9=0$
$x^{2}+y^{2}+6 x-8 y-11=0$
16. $x^{2}+y^{2}+4 x+6 y-36=0$
17. $x^{2}+y^{2}-10 x+8 y-23=0$
18. $x^{2}+y^{2}+2 x-35=0$
19. $x^{2}+y^{2}+6 x-8 y=0$
20. $x^{2}+y^{2}+6 x-14 y-12=0$
21. $x^{2}+y^{2}-8 x-4 y+18=0$

Match the equation of a circle with its description.

1. $x^{2}+y^{2}=4$
A. center $(-1,4)$, radius 4
2. $x^{2}+y^{2}=9$
B. center $(-2,-3)$, radius 3
3. $(x+1)^{2}+(y-4)^{2}=16$
C. center $(0,0)$, radius 2
4. $(x+2)^{2}+(y+3)^{2}=9$
D. center $(2,5)$, radius 3
5. $(x+3)^{2}+(y-5)^{2}=16$
E. center $(-3,5)$, radius 4
6. $(x-2)^{2}+(y-5)^{2}=9$
F. center $(0,0)$, radius 3
