
80. Use implicit differentiation.

x2 2 y2 5 1

}
d
d
x
}(x2) 2 }

d
d
x
}(y2) 5 }

d
d
x
}(1)

2x 2 2yy9 5 0

y9 5 }
2
2

x
y
} 5 }

x
y

}

y0 5 }
d
d
x
} }

x
y

}

5 }
(y)(1) 2

y2
(x)(y9)
}

5

5 }
y2

y
2

3
x2

}

5 2}
y
1
3}

(since the given equation is x2 2 y2 5 1)

At (2, Ï3w), }
d
dx

2y
2} 5 2}

y
1
3} 5 2}

(Ï
1

3w)3
} 5 2}

3Ï
1

3w
}.

Chapter 4
Applications of Derivatives

■ Section 4.1 Extreme Values of Functions
(pp. 177– 185)

Exploration 1 Finding Extreme Values
1. From the graph we can see that there are three critical

points: x 5 21, 0, 1.
Critical point values: f (21) 5 0.5, f (0) 5 0, f (1) 5 0.5
Endpoint values: f (22) 5 0.4, f (2) 5 0.4
Thus f has absolute maximum value of 0.5 at x 5 21 and
x 5 1, absolute minimum value of 0 at x 5 0, and local
minimum value of 0.4 at x 5 22 and x 5 2.

[22, 2] by [21, 1]

2. The graph of f 9 has zeros at x 5 21 and x 5 1 where the
graph of f has local extreme values. The graph of f 9 is not
defined at x 5 0, another extreme value of the graph of f.

[22, 2] by [21, 1]

3. Using the chain rule and }
d
d
x
}()x)) 5 }

)x
x
)

}, we find

}
d
d
x
f
} 5 }

)x
x
)

} ? }
(x

1
2
2

1

x
1

2

)2}.

Quick Review 4.1

1. f 9(x) 5 }
2Ï4w

1

2w xw
} ? }

d
d
x
}(4 2 x) 5 }

2Ï
2

4w
1

2w xw
}

2. f 9(x) 5 }
3
4

}x21/4

3. f 9(x) 5 }
d
d
x
}2(9 2 x2)21/2 5 2(9 2 x2)23/2 ? }

d
d
x
}(9 2 x2)

5 2(9 2 x2)23/2(22x) 5 }
(9 2

2
x
x

2)3/2}

4. f 9(x) 5 }
d
d
x
}(x2 2 1)21/3 5 2}

1
3

}(x2 2 1)24/3 ? }
d
d
x
}(x2 2 1)

5 2}
1
3

}(x2 2 1)24/3(2x) 5 }
3(x2

2

2

2x
1)4/3}

5. g9(x) 5 }
x2

1
1 1
} ? }

d
d
x
}(x2 1 1) 5 }

x2
2
1

x
1

}

6. g9(x) 5 2sin (ln x) ? }
d
d
x
} ln x 5 2}

sin (
x
ln x)
}

7. h9(x) 5 e2x ? }
d
d
x
}2x 5 2e2x

8. h9(x) 5 }
d
d
x
}eln x 5 }

d
d
x
}x 5 1

9. As x → 32, Ï9w 2w xw2w → 01. Therefore, lim
x→32

f (x) 5 `.

10. As x → 231, Ï9w 2w xw2w → 01. Therefore, lim
x→231

f (x) 5 `.

11. (a) }
d
d
x
}(x3 2 2x) 5 3x2 2 2

f 9(1) 5 3(1)2 2 2 5 1

(b) }
d
d
x
}(x 1 2) 5 1

f 9(3) 5 1

(c) Left-hand derivative:

lim
h→02

}
f (2 1 h

h
) 2 f (2)
} 5 lim

h→02

5 lim
h→02

}
h3 1 6h

h

2 1 10h
}

5 lim
h→02

(h2 1 6h 1 10)

5 10

Right-hand derivative:

lim
h→01

}
f (2 1 h

h
) 2 f (2)
} 5 lim

h→01
}
[(2 1 h)

h
1 2] 2 4
}

5 lim
h→01

}
h
h

}

5 lim
h→01

1

5 1

Since the left- and right-hand derivatives are not equal,

f 9(2) is undefined.

[(2 1 h)3 2 2(2 1 h)] 2 4
}}}

h

y 2 x1}
x
y

}2
}

y2
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12. (a) The domain is x Þ 2. (See the solution for 11.(c)).

(b) f 9(x) 5 h
Section 4.1 Exercises

1. Maximum at x 5 b, minimum at x 5 c2;
The Extreme Value Theorem applies because f is 
continuous on [a, b], so both the maximum and minimum
exist.

2. Maximum at x 5 c, minimum at x 5 b;
The Extreme Value Theorem applies because f is 
continuous on [a, b], so both the maximum and minimum
exist.

3. Maximum at x 5 c, no minimum;
The Extreme Value Theorem does not apply, because the
function is not defined on a closed interval.

4. No maximum, no minimum;
The Extreme Value Theorem does not apply, because the
function is not continuous or defined on a closed interval.

5. Maximum at x 5 c, minimum at x 5 a;
The Extreme Value Theorem does not apply, because the
function is not continuous.

6. Maximum at x 5 a, minimum at x 5 c;
The Extreme Value Theorem does not apply since the 
function is not continuous.

7. Local minimum at (21, 0), local maximum at (1, 0)

8. Minima at (22, 0) and (2, 0), maximum at (0, 2)

9. Maximum at (0, 5) Note that there is no minimum since the
endpoint (2, 0) is excluded from the graph.

10. Local maximum at (23, 0), local minimum at (2, 0),
maximum at (1, 2), minimum at (0, 21)

11. The first derivative f 9(x) 5 2}
x
1
2} 1 }

1
x

} has a zero at x 5 1.

Critical point value: f (1) 5 1 1 ln 1 5 1

Endpoint values: f (0.5) 5 2 1 ln 0.5 < 1.307

f (4) 5 }
1
4

} 1 ln 4 < 1.636

Maximum value is }
1
4

} 1 ln 4 at x 5 4;

minimum value is 1 at x 5 1;

local maximum at 1}
1
2

}, 2 2 ln 22
12. The first derivative g9(x) 5 2e2x has no zeros, so we need

only consider the endpoints.

g(21) 5 e2(21) 5 e        g(1) 5 e21 5 }
1
e

}

Maximum value is e at x 5 21;

minimum value is }
1
e

} at x 5 1.

13. The first derivative h9(x) 5 }
x 1

1
1

} has no zeros, so we need

only consider the endpoints.
h(0) 5 ln 1 5 0        h(3) 5 ln 4

Maximum value is ln 4 at x 5 3;
minimum value is 0 at x 5 0.

14. The first derivative k9(x) 5 22xe2x2
has a zero at x 5 0.

Since the domain has no endpoints, any extreme value must

occur at x 5 0. Since k(0) 5 e202
5 1 and lim

x→6`
k(x) 5 0,

the maximum value is 1 at x 5 0.

15. The first derivative f 9(x) 5 cos 1x 1 }
p

4
}2, has zeros at 

x 5 }
p

4
}, x 5 }

5
4
p
}.

Critical point values: x 5 }
p

4
} f (x) 5 1

x 5 }
5
4
p
} f (x) 5 21

Endpoint values: x 5 0 f (x) 5 }
Ï
1

2w
}

x 5 }
7
4
p
} f (x) 5 0

Maximum value is 1 at x 5 }
p

4
};

minimum value is 21 at x 5 }
5
4
p
};

local minimum at 10, }
Ï

1

2w
}2;

local maximum at 1}
7
4
p
}, 02

16. The first derivative g9(x) 5 sec x tan x has zeros at x 5 0

and x 5 p and is undefined at x 5 }
p

2
}. Since g(x) 5 sec x is

also undefined at x 5 }
p

2
}, the critical points occur only at

x 5 0 and x 5 p.

Critical point values: x 5 0 g(x) 5 1
x 5 p g(x) 5 21

Since the range of g(x) is (2`, 21] < [1, `), these values
must be a local minimum and local maximum, respectively.
Local minimum at (0, 1); local maximum at (p, 21)

17. The first derivative f 9(x) 5 }
2
5

}x23/5 is never zero but is 

undefined at x 5 0.

Critical point value: x 5 0 f (x) 5 0
Endpoint value: x 5 23 f (x) 5 (23)2/5

5 32/5 < 1.552

Since f (x) . 0 for x Þ 0, the critical point at x 5 0 is a
local minimum, and since f (x) # (23)2/5 for 23 # x , 1,
the endpoint value at x 5 23 is a global maximum.
Maximum value is 32/5 at x 5 23;
minimum value is 0 at x 5 0.

18. The first derivative f 9(x) 5 }
3
5

}x22/5 is never zero but is 

undefined at x 5 0.

Critical point value: x 5 0 f (x) 5 0
Endpoint value: x 5 3 f (x) 5 33/5 < 1.933

Since f (x) , 0 for x , 0 and f (x) . 0 for x . 0, the 
critical point is not a local minimum or maximum. The
maximum value is 33/5 at x 5 3.

x , 2
x . 2

3x2 2 2,
1,

128 Section 4.1



19.

[22, 6] by [22, 4]

Minimum value is 1 at x 5 2.

20.

[26, 6] by [22, 7]

To find the exact values, note that y9 5 3x2 2 2, which is

zero when x 5 6!}
2
3

}§. Local maximum at 

12!}
2
3

}§, 4 1 }
4Ï

9
6w

}2 < (20.816, 5.089); local minimum at 

1!}
2
3

}§, 4 2 }
4Ï

9
6w

}2 < (0.816, 2.911)

21.

[26, 6] by [25, 20]

To find the exact values, note that 

y9 5 3x2 1 2x 2 8 5 (3x 2 4)(x 1 2), which is zero when

x 5 22 or x 5 }
4
3

}. Local maximum at (22, 17); 

local minimum at 1}
4
3

}, 2}
4
2

1
7
}2

22.

[26, 6] by [24, 4]

Note that y9 5 3x2 2 6x 1 3 5 3(x 2 1)2, which is zero at
x 5 1. The graph shows that the function assumes lower
values to the left and higher values to the right of this point,
so the function has no local or global extreme values.

23.

[24, 4] by [22, 4]

Minimum value is 0 at x 5 21 and at x 5 1.

24.

[24.7, 4.7] by [23.1, 3.1]

To confirm that there are no “hidden” extrema, note that

y9 5 2(x2 2 1)22(2x) 5 }
(x2

2

2

2x
1)2} which is zero only at

x 5 0 and is undefined only where y is undefined. There is

a local maximum at (0, 21).

25.

[21.5, 1.5] by [20.5, 3]

The minimum value is 1 at x 5 0.

26.

[24.7, 4.7] by [23.1, 3.1]

The actual graph of the function has asymptotes at 
x 5 61, so there are no extrema near these values. (This is
an example of grapher failure.) There is a local 
minimum at (0, 1).

27.

[24.7, 4.7] by [23.1, 3.1]

Maximum value is 2 at x 5 1;
minimum value is 0 at x 5 21 and at x 5 3.

28.

[24, 4] by [280, 30]

Minimum value is 2}
11
2
5

} at x 5 23;

local maximum at (0, 10);

local minimum at 11, }
1
2
3
}2

29.

[25, 5] by [20.7, 0.7]

Maximum value is }
1
2

} at x 5 1;

minimum value is 2}
1
2

} at x 5 21.
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30.

[25, 5] by [20.8, 0.6]

Maximum value is }
1
2

} at x 5 0;

minimum value is 2}
1
2

} at x 5 22.

31.

[26, 6] by [0, 12]

Maximum value is 11 at x 5 5;
minimum value is 5 on the interval [23, 2]; 
local maximum at (25, 9)

32.

[23, 8] by [25, 5]

Maximum value is 4 on the interval [5, 7];
minimum value is 24 on the interval [22, 1].

33.

[26, 6] by [26, 6]

Maximum value is 5 on the interval [3, `);
minimum value is 25 on the interval (2`, 22].

34.

[26, 6] by [0, 9]

Minimum value is 4 on the interval [21, 3]

35. (a) No, since f 9(x) 5 }
2
3

}(x 2 2)21/3, which is undefined at
x 5 2.

(b) The derivative is defined and nonzero for all x Þ 2.
Also, f (2) 5 0 and f (x) . 0 for all x Þ 2.

(c) No, f (x) need not not have a global maximum because
its domain is all real numbers. Any restriction of f to a
closed interval of the form [a, b] would have both a
maximum value and a minimum value on the interval.

(d) The answers are the same as (a) and (b) with 2 replaced
by a.

36. Note that f (x) 5 h

Therefore, f 9(x) 5 h
(a) No, since the left- and right-hand derivatives at x 5 0

are 29 and 9, respectively.

(b) No, since the left- and right-hand derivatives at x 5 3
are 218 and 18, respectively.

(c) No, since the left- and right-hand derivatives at x 5 23
are 218 and 18, respectively.

(d) The critical points occur when f 9(x) 5 0 

(at x 5 6Ï3w) and when f 9(x) is undefined (at x 5 0 or

x 5 63). The minimum value is 0 at x 5 23, at x 5 0,

and at x 5 3; local maxima occur at (2Ï3w, 6Ï3w) and

(Ï3w, 6Ï3w).

37.

[24, 4] by [23, 3]

y9 5 x2/3(1) 1 }
2
3

}x21/3(x 1 2) 5 }
5

3

x

Ï
1
3

xw
4

}

38.

[24, 4] by [23, 3]

y9 5 x2/3(2x) 1 }
2
3

}x21/3(x2 2 4) 5 }
8x

3

2

Ï
3
2

xw
8

}

x , 23 or 0 , x , 3
23 , x , 0 or x . 3.

23x2 1 9,
3x2 2 9,

x # 23 or 0 # x , 3
23 , x , 0 or x $ 3.

2x3 1 9x,
x3 2 9x,
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crit. pt. derivative extremum value

x 5 21 0 minimum 23

x 5 0 undefined local max 0

x 5 1 0 minimum 23

crit. pt. derivative extremum value

x 5 2}
4
5

} 0 local max }
1
2
2
5
}101/3 < 1.034

x 5 0 undefined local min 0



39.

[22.35, 2.35] by [23.5, 3.5]

y9 5 x ? }
2Ï4w

1

2w xw2w
}(22x) 1 (1)Ï4w 2w xw2w

5 }
2x

Ï

2 1

4w
(

2w
4 2

xw2w
x2)

} 5 }
Ï
4

4w
2

2w
2x

xw

2

2w
}

40.

[24.7, 4.7] by [21, 5]

y 5 x2 ? }
2Ï3w

1

2w xw
}(21) 1 2xÏ3w 2w xw

5}
2x2

2

1

Ï3w
4x

2w
(3

xw
2 x)

}5 }
2

2

5

Ï
x2

3w
1

2w
1

xw
2x

}

41.

[24.7, 4.7] by [0, 6.2]

y9 5 h

42.

[24, 4] by [21, 6]

y9 5 h

43.

[24, 6] by [22, 6]

y9 5 h

44.

[24, 6] by [25, 5]

We begin by determining whether f 9(x) is defined at x 5 1,
where

f (x) 5 h
Left-hand derivative:

lim
h→02

}
f (1 1 h

h
) 2 f (1)
} 5 lim

h→02

5 lim
h→02

}
2h

4

2

h
2 h
}

5 lim
h→02

}
1
4

}(2h 2 4h)

5 21

Right-hand derivative:

lim
h→01

}
f (1 1 h

h
) 2 f (1)
}

5 lim
h→01

5 lim
h→01

}
h3 2 3

h
h2 2 h
}

5 lim
h→01

(h2 2 3h 2 1)

5 21

Thus f 9(x) 5 h x # 1

x . 1

2}
1
2

}x 2 }
1
2

},

3x2 2 12x 1 8,

(1 1 h)3 2 6(1 1 h)2 1 8(1 1 h) 2 3
}}}}

h

2}
1
4

}(1 1 h)2 2 }
1
2

}(1 1 h) 1 }
1
4
5
} 2 3

}}}}
h

x # 1

x . 1

2}
1
4

}x2 2 }
1
2

}x 1 }
1
4
5
},

x3 2 6x2 1 8x,

x , 1
x . 1

22x 2 2,
22x 1 6,

x , 0
x . 0

21,
2 2 2x,

x , 1
x . 1

22,
1,
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crit. pt. derivative extremum value

x 5 1 undefined minimum 2

crit. pt. derivative extremum value

x 5 0 0 minimum 0

x 5 }
1
5
2
} 0 local max }

1
1

4
2

4
5

}151/2 < 4.462

x 5 3 undefined minimum 0

crit. pt. derivative extremum value

x 5 22 undefined local max 0

x 5 2Ï2w 0 minimum 22

x 5 Ï2w 0 maximum 2

x 5 2 undefined local min 0

crit. pt. derivative extremum value

x 5 21 0 maximum 5

x 5 1 undefined local min 1

x 5 3 0 maximum 5

crit. pt. derivative extremum value

x 5 0 undefined local min 3

x 5 1 0 local max 4



44. continued

Note that 2}
1
2

}x 2 }
1
2

} 5 0 when x 5 21, and 

3x2 2 12x 1 8 5 0 when x 5

5 }
12 6

6

Ï4w8w
} 5 2 6 }

2Ï
3

3w
}.

But 2 2 }
2Ï

3
3w

} < 0.845 , 1, so the only critical points

occur at x 5 21 and x 5 2 1 }
2Ï

3
3w

} < 3.155.

45. Graph (c), since this is the only graph that has positive
slope at c.

46. Graph (b), since this is the only graph that represents a 
differentiable function at a and b and has negative slope 
at c.

47. Graph (d), since this is the only graph representing a 
function that is differentiable at b but not at a.

48. Graph (a), since this is the only graph that represents a
function that is not differentiable at a or b.

49. (a) V(x) 5 160x 2 52x2 1 4x3

V9(x) 5 160 2 104x 1 12x2 5 4(x 2 2)(3x 2 20)
The only critical point in the interval (0, 5) is at x 5 2.
The maximum value of V(x) is 144 at x 5 2.

(b) The largest possible volume of the box is 144 cubic
units, and it occurs when x 5 2.

50. (a) P9(x) 5 2 2 200x22

The only critical point in the interval (0, `) is at 
x 5 10. The minimum value of P(x) is 40 at x 5 10.

(b) The smallest possible perimeter of the rectangle is 
40 units and it occurs at x 5 10, which makes the 
rectangle a 10 by 10 square.

51. (a) f 9(x) 5 3ax2 1 2bx 1 c is a quadratic, so it can have 
0, 1, or 2 zeros, which would be the critical points of f.
Examples:

[23, 3] by [25, 5]

The function f (x) 5 x3 2 3x has two critical points at
x 5 21 and x 5 1.

[23, 3] by [25, 5]

The function f (x) 5 x3 2 1 has one critical point at 
x 5 0.

[23, 3] by [25, 5]

The function f (x) 5 x3 1 x has no critical points.

(b) The function can have either two local extreme values
or no extreme values. (If there is only one critical point,
the cubic function has no extreme values.)

52. (a) By the definition of local maximum value, there is an
open interval containing c where f (x) # f (c),
so f (x) 2 f (c) # 0.

(b) Because x → c1,we have (x 2 c) . 0, and the sign of
the quotient must be negative (or zero). This means the
limit is nonpositive.

(c) Because x → c2, we have (x 2 c) , 0, and the sign of
the quotient must be positive (or zero). This means the
limit is nonnegative.

(d) Assuming that f 9(c) exists, the one-sided limits in (b)
and (c) above must exist and be equal. Since one is
nonpositive and one is nonnegative, the only possible
common value is 0.

(e) There will be an open interval containing c where
f (x) 2 f (c) $ 0. The difference quotient for the 
left-hand derivative will have to be negative (or zero),
and the difference quotient for the right-hand derivative
will have to be positive (or zero). Taking the limit, the
left-hand derivative will be nonpositive, and the 
right-hand derivative will be nonnegative. Therefore,
the only possible value for f 9(c) is 0.

53. (a)

[20.1, 0.6] by [21.5, 1.5]

f (0) 5 0 is not a local extreme value because in any
open interval containing x 5 0, there are infinitely
many points where f (x) 5 1 and where f (x) 521.

(b) One possible answer, on the interval [0, 1]:

f (x) 5 h
This function has no local extreme value at 
x 5 1. Note that it is continuous on [0, 1].

■ Section 4.2 Mean Value Theorem
(pp. 186–194)

Quick Review 4.2
1. 2x2 2 6 , 0

2x2 , 6
x2 , 3

2Ï3w , x , Ï3w
Interval: (2Ï3w, Ï3w)

0 # x , 1

x 5 1

(1 2 x) cos }
1 2

1
x

},

0,

12 6 Ï1w2w2w2w 4w(3w)(w8w)w
}}}

2(3)
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crit. pt. derivative extremum value

x 5 21 0 local max 4

x < 3.155 0 local max < 23.079



2. 3x2 2 6 . 0
3x2 . 6

x2 . 2
x , 2Ï2w or x . Ï2w

Intervals: (2`, 2Ï2w) < (Ï2w, `)

3. Domain: 8 2 2x2 $ 0
8 $ 2x2

4 $ x2

22 # x # 2
The domain is [22, 2].

4. f is continuous for all x in the domain, or, in the interval
[22, 2].

5. f is differentiable for all x in the interior of its domain, or,
in the interval (22, 2).

6. We require x2 2 1 Þ 0, so the domain is x Þ 61.

7. f is continuous for all x in the domain, or, for all x Þ 61.

8. f is differentiable for all x in the domain, or, for all x Þ 61.

9. 7 5 22(22) 1 C
7 5 4 1 C
C 5 3

10. 21 5 (1)2 1 2(1) 1 C
21 5 3 1 C

C 5 24

Section 4.2 Exercises

1. (a) f 9(x) 5 5 2 2x

Since f 9(x) . 0 on 12`, }
5
2

}2, f 9(x) 5 0 at x 5 }
5
2

}, and

f 9(x) , 0 on 1}
5
2

}, `2, we know that f (x) has a local 

maximum at x 5 }
5
2

}. Since f 1}
5
2

}2 5 }
2
4
5
}, the local 

maximum occurs at the point 1}
5
2

}, }
2
4
5
}2. (This is also a

global maximum.)

(b) Since f 9(x) . 0 on 12`, }
5
2

}2, f (x) is increasing on 

12`, }
5
2

}4.
(c) Since f 9(x) , 0 on 1}

5
2

}, `2, f (x) is decreasing on 3}
5
2

}, `2.

2. (a) g9(x) 5 2x 2 1

Since g9(x) , 0 on 12`, }
1
2

}2, g9(x) 5 0 at x 5 }
1
2

}, and

g9(x) . 0 on 1}
1
2

}, `2, we know that g(x) has a local 

minimum at x 5 }
1
2

}.

Since g1}
1
2

}2 5 2}
4
4
9
}, the local minimum occurs at the

point 1}
1
2

}, 2}
4
4
9
}2. (This is also a global minimum.)

(b) Since g9(x) . 0 on 1}
1
2

}, `2, g(x) is increasing on 3}
1
2

}, `2.

(c) Since g9(x) , 0 on 12`, }
1
2

}2, g(x) is decreasing on 

12`, }
1
2

}4.

3. (a) h9(x) 5 2}
x
2
2}

Since h9(x) is never zero and is undefined only where
h(x) is undefined, there are no critical points. Also, the
domain (2`, 0) < (0, `) has no endpoints. Therefore,
h(x) has no local extrema.

(b) Since h9(x) is never positive, h(x) is not increasing on
any interval.

(c) Since h9(x) , 0 on (2`, 0) < (0, `), h(x) is decreasing
on (2`, 0) and on (0, `).

4. (a) k9(x) 5 2}
x
2
3}

Since k9(x) is never zero and is undefined only where
k(x) is undefined, there are no critical points. Also, the
domain (2`, 0) < (0, `) has no endpoints. Therefore,
k(x) has no local extrema.

(b) Since k9(x) . 0 on (2`, 0), k(x) is increasing on 
(2`, 0).

(c) Since k9(x) , 0 on (0, `), k(x) is decreasing on (0, `).

5. (a) f 9(x) 5 2e2x

Since f 9(x) is never zero or undefined, and the domain
of f (x) has no endpoints, f (x) has no extrema.

(b) Since f 9(x) is always positive, f (x) is increasing on
(2`, `).

(c) Since f 9(x) is never negative, f (x) is not decreasing on
any interval.

6. (a) f 9(x) 5 20.5e20.5x

Since f 9(x) is never zero or undefined, and the domain
of f (x) has no endpoints, f (x) has no extrema.

(b) Since f 9(x) is never positive, f (x) is not increasing on
any interval.

(c) Since f 9(x) is always negative, f (x) is decreasing on
(2`, `).

7. (a) y9 5 2}
2Ïx

1

w1w 2w
}

In the domain [22, `), y9 is never zero and is 
undefined only at the endpoint x 5 22. The function y
has a local maximum at (22, 4). (This is also a global 
maximum.)

(b) Since y9 is never positive, y is not increasing on any
interval.

(c) Since y9 is negative on (22, `), y is decreasing on 
[22, `).

8. (a) y9 5 4x3 2 20x 5 4x(x 1 Ï5w)(x 2 Ï5w)

The function has critical points at x 5 2Ï5w, x 5 0,

and x 5 Ï5w. Since y9 , 0 on (2`, 2Ï5w) and 

(0, Ï5w) and y9 . 0 on (2Ï5w, 0) and (Ï5w, `), the

points at x 5 6Ï5w are local minima and the point at

x 5 0 is a local maximum. Thus, the function has a

local maximum at (0, 9) and local minima at

(2Ï5w, 216) and (Ï5w, 216). (These are also global

minima.)

(b) Since y9 . 0 on (2Ï5w, 0) and (Ï5w, `), y is increasing
on [2Ï5w, 0] and [Ï5w, `).

(c) Since y9 , 0 on (2`, 2Ï5w) and (0, Ï5w), y is 
decreasing on (2`, 2Ï5w] and [0, Ï5w].
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9.

[24.7, 4.7] by [23.1, 3.1]

(a) f 9(x) 5 x ? }
2Ï4w

1

2w xw
}(21) 1 Ï4w 2w xw

5 }
2

2

Ï
3x

4w
1

2w
8

xw
}

The local extrema occur at the critical point x 5 }
8
3

} and

at the endpoint x 5 4. There is a local (and absolute)

maximum at 1}
8
3

}, }
3Ï
16

3w
}2 or approximately (2.67, 3.08),

and a local minimum at (4, 0).

(b) Since f 9(x) . 0 on 12`, }
8
3

}2, f (x) is increasing on 

12`, }
8
3

}4.
(c) Since f 9(x) , 0 on 1}

8
3

}, 42, f (x) is decreasing on 

3}
8
3

}, 44.
10.

[25, 5] by [215, 15]

(a) g9(x) 5 x1/3(1) 1 }
1
3

}x22/3(x 1 8) 5 }
4
3
x
x
1
2/3

8
}

The local extrema can occur at the critical points 

x 5 22 and x 5 0, but the graph shows that no extrema

occurs at x 5 0. There is a local (and absolute) 

minimum at (22, 26Ï
3

2w) or approximately

(22, 27.56).

(b) Since g9(x) . 0 on the intervals (22, 0) and (0, `), and
g(x) is continuous at x 5 0, g(x) is increasing on 
[22, `).

(c) Since g9(x) , 0 on the interval (2`, 22), g(x) is
decreasing on (2`, 22].

11.

[25, 5] by [20.4, 0.4]

(a) h9(x) 5 5 }
(x

x
2

2

1

2

4
4
)2}

5 }
(x 1

(x2
2
1

)(x
4
2

)2
2)

}

The local extrema occur at the critical points, x 5 62.

There is a local (and absolute) maximum at 122, }
1
4

}2
and a local (and absolute) minimum at 12, 2}

1
4

}2.

(b) Since h9(x) . 0 on (2`, 22) and (2, `), h(x) is
increasing on (2`, 22] and [2, `).

(c) Since h9(x) , 0 on (22, 2), h(x) is decreasing on 
[22, 2].

12.

[24.7, 4.7] by [23.1, 3.1]

(a) k9(x) 5 5 2}
(x

x
2

2

2

1

4
4
)2}

Since k9(x) is never zero and is undefined only where
k(x) is undefined, there are no critical points. Since
there are no critical points and the domain includes no
endpoints, k(x) has no local extrema.

(b) Since k9(x) is never positive, k(x) is not increasing on
any interval.

(c) Since k9(x) is negative wherever it is defined, k(x) is
decreasing on each interval of its domain: on
(2`, 22), (22, 2), and (2, `).

13.

[24, 4] by [26, 6]

(a) f 9(x) 5 3x2 2 2 1 2 sin x
Note that 3x2 2 2 . 2 for )x) $ 1.2 and )2 sin x) # 2 for
all x, so f 9(x) . 0 for )x) $ 1.2. Therefore, all critical
points occur in the interval (21.2, 1.2), as suggested by
the graph. Using grapher techniques, there is a local
maximum at approximately (21.126, 20.036), and a
local minimum at approximately (0.559, 22.639).

(b) f (x) is increasing on the intervals (2`, 21.126] and
[0.559, `), where the interval endpoints are
approximate.

(c) f (x) is decreasing on the interval [21.126, 0.559],
where the interval endpoints are approximate.

14.

[26, 6] by [212, 12]

(a) g9(x) 5 2 2 sin x
Since 1 # g9(x) # 3 for all x, there are no critical
points. Since there are no critical points and the domain
has no endpoints, there are no local extrema.

(b) Since g9(x) . 0 for all x, g(x) is increasing on (2`, `).

(c) Since g9(x) is never negative, g(x) is not decreasing on
any interval.

(x2 2 4)(1) 2 x(2x)
}}}

(x2 2 4)2

(x2 1 4)(21) 2 (2x)(2x)
}}}

(x2 1 4)2
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15. (a) f is continuous on [0, 1] and differentiable on (0, 1).

(b) f 9(c) 5 }
f (1

1
) 2

2

f
0
(0)

}

2c 1 2 5 }
2 2

1
(21)
}

2c 5 1

c 5 }
1
2

}

16. (a) f is continuous on [0, 1] and differentiable on (0, 1).

(b) f 9(c) 5 }
f (1

1
) 2

2

f
0
(0)

}

}
2
3

}c21/3 5 }
1 2

1
0

}

c21/3 5 }
3
2

}

c 5 1}
3
2

}2
23

c 5 }
2
8
7
}

17. (a) f is continuous on [21, 1] and differentiable on 
(21, 1).

(b) f 9(c) 5 }
f (1

1
)
2

2

(
f
2

(2
1)

1)
}

}
Ï1w

1

2w cw2w
} 5

Ï1w 2w cw2w 5 }
p

2
}

1 2 c2 5 }
p

4
2}

c2 5 1 2 }
p

4
2}

c 5 6!1§ 2§ }
p§4

2}§ < 60.771

18. (a) f is continuous on [2, 4] and differentiable on (2, 4).

(b) f 9(c) 5 }
f (4

4
) 2

2

f
2
(2)

}

}
c 2

1
1

} 5 }
ln 3 2

2
ln 1

}

c 2 1 5 }
ln

2
3

}

c 5 1 1 }
ln

2
3

} < 2.820

19. (a) The secant line passes through (0.5, f (0.5)) 5 (0.5, 2.5)
and (2, f(2)) 5 (2, 2.5), so its equation is y 5 2.5.

(b) The slope of the secant line is 0, so we need to find c
such that f 9(c) 5 0.

1 2 c22 5 0
c22 5 1

c 5 1
f (c) 5 f (1) 5 2

The tangent line has slope 0 and passes through (1, 2),
so its equation is y 5 2.

20. (a) The secant line passes through (1, f (1)) 5 (1, 0) and 

(3, f (3)) 5 (3, Ï2w), so its slope is 

}
Ï

3
2w
2

2

1
0

} 5 }
Ï
2
2w

} 5 }
Ï
1

2w
}. 

The equation is y 5 }
Ï
1

2w
}(x 2 1) 1 0 

or y 5 }
Ï
1

2w
}x 2 }

Ï
1

2w
}, or y < 0.707x 2 0.707.

(b) We need to find c such that f 9(c) 5 }
Ï

1

2w
}.

}
2Ïc

1

w2w 1w
} 5 }

Ï
1

2w
}

2Ïcw2w 1w 5 Ï2w

c 2 1 5 }
1
2

}

c 5 }
3
2

}

f (c) 5 f 1}
3
2

}2 5 !}
1
2

}§ 5 }
Ï
1

2w
}

The tangent line has slope }
Ï
1

2w
} and passes through 

1}
3
2

}, }
Ï
1

2w
}2. Its equation is y 5 }

Ï
1

2w
}1x 2 }

3
2

}2 1 }
Ï
1

2w
} or

y 5 }
Ï
1

2w
}x 2 }

2Ï
1

2w
}, or y < 0.707x 2 0.354.

21. (a) Since f 9(x) 5 }
1
3

}x22/3, f is not differentiable at x 5 0.

(b)

[21, 1] by [21, 1]

(c) f 9(c) 5 }
f (1

1
)
2

2

(
f
2

(2
1)

1)
}

}
1
3

}c22/3 5 }
1 2

2
(21)
}

}
1
3

}c22/3 5 1

c22/3 5 3

c 5 6323/2 < 0.192

}
p

2
} 2 12}

p

2
}2

}}
2
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22. (a) Since f 9(x) 5 h ,

f is not differentiable at x 5 1. (If f were differentiable
at x 5 1, it would violate the Intermediate Value
Theorem for Derivatives.)

(b)

[0, 3] by [21, 3]

(c) We require f 9(c) 5 }
f (3

3
) 2

2

f
0
(0)

} 5 }
2 2

3
1

} 5 }
1
3

}, but 

f 9(x) 5 61 for all x where f 9(x) is defined. Therefore,

there is no such value of c.

23. (a) Since f 9(x) 5 h ,

f is not differentiable at x 5 0. (If f were differentiable
at x 5 1, it would violate the Intermediate Value
Theorem for Derivatives.)

(b)

[21, 1] by [21, 2]

(c) We require f 9(c) 5 }
f (1

1
)
2

2

(
f
2

(2
1)

1)
} 5 }

0 2

2
0

} 5 0, but

f 9(x) 5 61 for all x where f 9(x) is defined. Therefore,

there is no such value of c.

24. (a) We test for differentiability at x 5 0, using the limits

given in Section 3.5.

Left-hand derivative:

lim
h→02

}
f (0 1 h

h
) 2 f (0)
} 5 lim

h→02
}
cos h

h
2 1
} 5 0

Right-hand derivative:

lim
h→01

}
f(0 1 h

h
) 2 f(0)
} 5 lim

h→01
}
(1 1 sin

h
h) 2 1
}

5 lim
h→01

}
sin

h
h

}

5 1

Since the left- and right-hand derivatives are not equal,

f is not differentiable at x 5 0.

(b)

[2p, p] by [21, 2]

(c) Note that f 9(x) 5 h .

We require f 9(c) 5 }
f (p

p

)
2

2

(
f
2

(2
p)

p)
} 5 }

1 2

2p

(21)
} 5 }

p

1
}.

For 2p , c , 0, this occurs when 2sin c 5 }
p

1
}, so 

c 5 2sin211}
p

1
}2 < 20.324 or 

c 5 2p 1 sin211}
p

1
}2 < 22.818. For 0 , c , p, this

occurs when cos c 5 }
p

1
}, so c 5 cos211}

p

1
}2 < 1.247. The 

possible values of c are approximately

22.818, 20.324, and 1.247.

25. f (x) 5 }
x
2

2
} 1 C

26. f (x) 5 2x 1 C

27. f (x) 5 x3 2 x2 1 x 1 C

28. f (x) 5 2cos x 1 C

29. f (x) 5 ex 1 C

30. f (x) 5 ln (x 2 1) 1 C

31. f (x) 5 }
1
x

} 1 C, x . 0

f (2) 5 1

}
1
2

} 1 C 5 1

C 5 }
1
2

}

f (x) 5 }
1
x

} 1 }
1
2

}, x . 0

32. f (x) 5 x1/4 1 C

f (1) 5 22

11/4 1 C 5 22

1 1 C 5 22

C 5 23

f (x) 5 x1/4 2 3

33. f (x) 5 ln (x 1 2) 1 C
f (21) 5 3

ln (21 1 2) 1 C 5 3
0 1 C 5 3

C 5 3
f (x) 5 ln (x 1 2) 1 3

34. f (x) 5 x2 1 x 2 sin x 1 C
f (0) 5 3

0 1 C 5 3
C 5 3

f (x) 5 x2 1 x 2 sin x 1 3

2p # x , 0
0 , x # p

2sin x,
cos x,

21 # x , 0
1 $ x . 0

1,
21,

0 # x , 1
3 $ x . 1

21,
1,
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35. Possible answers:

(a) (b)

[22, 4] by [22, 4] [21, 4] by [0, 3.5]

(c)

[21, 4] by [0, 3.5]

36. Possible answers:

(a) (b)

[21, 5] by [22, 4] [21, 5] by [21, 8]

(c) (d)

[21, 5] by [21, 8] [21, 5] by [21, 8]

37. One possible answer:

[23, 3] by [215, 15]

38. One possible answer:

[23, 3] by [270, 70]

39. Because the trucker’s average speed was 79.5 mph, and by
the Mean Value Theorem, the trucker must have been going
that speed at least once during the trip.

40. Let f (t) denote the temperature indicated after t seconds.
We assume that f 9(t) is defined and continuous for 
0 # t # 20. The average rate of change is 10.68F/sec.
Therefore, by the Mean Value Theorem, f 9(c) 5 10.68F/sec
for some value of c in [0, 20]. Since the temperature was
constant before t 5 0, we also know that f 9(0) 5 08F/min.
But f 9 is continuous, so by the Intermediate Value Theorem,
the rate of change f 9(t) must have been 10.18F/sec at some
moment during the interval.

41. Because its average speed was approximately 7.667 knots,
and by the Mean Value Theorem, it must have been going
that speed at least once during the trip.

42. The runner’s average speed for the marathon was 
approximately 11.909 mph. Therefore, by the Mean Value
Theorem, the runner must have been going that speed at
least once during the marathon. Since the initial speed and
final speed are both 0 mph and the runner’s speed is
continuous, by the Intermediate Value Theorem, the
runner’s speed must have been 11 mph at least twice.

43. (a) Since v9(t) 5 1.6, v(t) 5 1.6t 1 C. But v(0) 5 0, so
C 5 0 and v(t) 5 1.6t. Therefore,
v(30) 5 1.6(30) 5 48. The rock will be going 
48 m/sec.

(b) Let s(t) represent position.
Since s9(t) 5 v(t) 5 1.6t, s(t) 5 0.8t2 1 D. But 
s(0) 5 0, so D 5 0 and s(t) 5 0.8t2. Therefore,
s(30) 5 0.8(30)2 5 720. The rock travels 720 meters in
the 30 seconds it takes to hit bottom, so the bottom of
the crevasse is 720 meters below the point of release.

(c) The velocity is now given by v(t) 5 1.6t 1 C, where
v(0) 5 4. (Note that the sign of the initial velocity is
the same as the sign used for the acceleration, since
both act in a downward direction.) Therefore,
v(t) 5 1.6t 1 4, and s(t) 5 0.8t2 1 4t 1 D, where
s(0) 5 0 and so D 5 0. Using s(t) 5 0.8t2 1 4t and the
known crevasse depth of 720 meters, we solve
s(t) 5 720 to obtain the positive solution t < 27.604,
and so v(t) 5 v(27.604) 5 1.6(27.604) 1 4 < 48.166.
The rock will hit bottom after about 27.604 seconds,
and it will be going about 48.166 m/sec.

44. (a) We assume the diving board is located at s 5 0 and the

water at s 5 10, so that downward velocities are 

positive. The acceleration due to gravity is 9.8 m/sec2,

so v9(t) 5 9.8 and v(t) 5 9.8t 1 C. Since v(0) 5 0, we

have v(t) 5 9.8t. Then the position is given by s(t)

where s9(t) 5 v(t) 5 9.8t, so s(t) 5 4.9t2 1 D. Since

s(0) 5 0, we have s(t) 5 4.9t2. Solving s(t) 5 10 gives

t2 5 }
4
1
.
0
9
} 5 }

1
4
0
9
0

}, so the positive solution is t 5 }
1
7
0
}. The

velocity at this time is v1}
1
7
0
}2 5 9.81}

1
7
0
}2 5 14 m/sec.

(b) Again v(t) 5 9.8t 1 C, but this time v(0) 5 22 and so

v(t) 5 9.8t 2 2. Then s9(t) 5 9.8t 2 2, so 

s(t) 5 4.9t2 2 2t 1 D. Since s(0) 5 0, we have 

s(t) 5 4.9t2 2 2t. Solving s(t) 5 10 gives the positive

solution t 5 }
2 1

9
1
.8
0Ï2w
} < 1.647 sec. 

The velocity at this time is 

v1}2 1

9
1
.8
0Ï2w
}2 5 9.81}2 1

9
1
.8
0Ï2w
}2 2 2 5 10Ï2w m/sec or

about 14.142 m/sec.
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45. Because the function is not continuous on [0, 1]. The 
function does not satisfy the hypotheses of the Mean Value
Theorem, and so it need not satisfy the conclusion of the
Mean Value Theorem.

46. Because the Mean Value Theorem applies to the function
y 5 sin x on any interval, and y 5 cos x is the derivative of
sin x. So, between any two zeros of sin x, its derivative,
cos x, must be zero at least once.

47. f (x) must be zero at least once between a and b by the
Intermediate Value Theorem. Now suppose that f (x) is zero
twice between a and b. Then by the Mean Value Theorem,
f 9(x) would have to be zero at least once between the two
zeros of f (x), but this can’t be true since we are given that
f 9(x) Þ 0 on this interval. Therefore, f (x) is zero once and
only once between a and b.

48. Let f (x) 5 x4 1 3x 1 1. Then f (x) is continuous and 
differentiable everywhere. f 9(x) 5 4x3 1 3, which is never
zero between x 5 22 and x 5 21. Since f (22) 5 11 and
f (21) 5 21, exercise 47 applies, and f (x) has exactly one
zero between x 5 22 and x 5 21.

49. Let f (x) 5 x 1 ln (x 1 1). Then f (x) is continuous and 

differentiable everywhere on [0, 3]. f 9(x) 5 1 1 }
x 1

1
1

},

which is never zero on [0, 3]. Now f (0) 5 0, so x 5 0 is
one solution of the equation. If there were a second 
solution, f (x) would be zero twice in [0, 3], and by the
Mean Value Theorem, f 9(x) would have to be zero 
somewhere between the two zeros of f (x). But this can’t
happen, since f 9(x) is never zero on [0, 3]. Therefore,
f (x) 5 0 has exactly one solution in the interval [0, 3].

50. Consider the function k(x) 5 f (x) 2 g(x). k(x) is continuous
and differentiable on [a, b], and since 
k(a) 5 f (a) 2 g(a) 5 0 and k(b) 5 f (b) 2 g(b) 5 0, by the
Mean Value Theorem, there must be a point c in (a, b)
where k9(c) 5 0. But since k9(c) 5 f 9(c) 2 g9(c), this
means that f 9(c) 5 g9(c), and c is a point where the graphs
of f and g have parallel or identical tangent lines.

[21, 1] by [22, 2]

51. (a) Increasing: [22, 21.3] and [1.3, 2];
decreasing: [21.3, 1.3];
local max: x < 21.3
local min: x < 1.3

(b) Regression equation: y 5 3x2 2 5

[22.5, 2.5] by [28, 10]

(c) Since f 9(x) 5 3x2 2 5, we have f (x) 5 x3 2 5x 1 C.
But f (0) 5 0, so C 5 0. Then f (x) 5 x3 2 5x.

52. (a) Toward: 0 , t , 2 and 5 , t , 8;
away: 2 , t , 5

(b) A local extremum in this problem is a time/place where
Priya changes the direction of her motion.

(c) Regression equation:
y 5 20.0820x3 1 0.9163x2 2 2.5126x 1 3.3779

[20.5, 8.5] by [20.5, 5]

(d) Using the unrounded values from the regression 
equation, we obtain 
f 9(t) 5 20.2459t2 1 1.8324t 2 2.5126. According to
the regression equation, Priya is moving toward the
motion detector when f 9(t) , 0 (0 , t , 1.81 and 
5.64 , t , 8), and away from the detector when 
f 9(t) . 0 (1.81 , t , 5.64).

53. }
f(b

b
) 2

2

f
a
(a)

} 5 5 2}
a
1
b
}

f 9(c) 5 2}
c
1
2}, so 2}

c
1
2} 5 2}

a
1
b
} and c2 5 ab.

Thus, c 5 Ïawbw.

54. }
f (b

b
) 2

2

f
a
(a)

} 5 }
b
b

2 2

2

a
a

2
} 5 b 1 a

f 9(c) 5 2c, so 2c 5 b 1 a and c 5 }
a 1

2
b

}.

55. By the Mean Value Theorem,
sin b 2 sin a 5 (cos c)(b 2 a) for some c between a and b.
Taking the absolute value of both sides and using 
)cos c) # 1 gives the result.

56. Apply the Mean Value Theorem to f on [a, b].

Since f (b) , f (a), }
f(b

b
) 2

2

f
a
(a)

} is negative, and hence f 9(x)

must be negative at some point between a and b.

57. Let f (x) be a monotonic function defined on an interval D.

For any two values in D, we may let x1 be the smaller value

and let x2 be the larger value, so x1 , x2. Then either 

f (x1) , f (x2) (if f is increasing), or f (x1) . f (x2) (if f is

decreasing), which means f (x1) Þ f (x2). Therefore, f is 

one-to-one.

■ Section 4.3 Connecting f9 and f 0 with the
Graph of f (pp. 194–206)

Exploration 1 Finding f from f 9

1. Any function f (x) 5 x4 2 4x3 1 C where C is a real 
number. For example, let C 5 0, 1, 2. Their graphs are all 
vertical shifts of each other.

2. Their behavior is the same as the behavior of the function f
of Example 8.

}
1
b

} 2 }
1
a

}

}
b 2 a
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Exploration 2 Finding f from f 9 and f 0

1. f has an absolute maximum at x 5 0 and an absolute 
minimum of 1 at x 5 4. We are not given enough 
information to determine f (0).

2. f has a point of inflection at x 5 2.

3.

[23, 5] by [25, 20]

Quick Review 4.3
1. x2 2 9 , 0

(x 1 3)(x 2 3) , 0

Solution set: (23, 3)

2. x3 2 4x . 0
x(x 1 2)(x 2 2) . 0

Solution set: (22, 0) < (2, `)

3. f: all reals
f 9: all reals, since f 9(x) 5 xex 1 ex

4. f: all reals

f 9: x Þ 0, since f 9(x) 5 }
3
5

}x22/5

5. f: x Þ 2

f 9: x Þ 2, since f 9(x) 5}
(x 2 2

(x
)(

2

1)
2
2

)2
(x)(1)

}5 }
(x

2

2

2
2)2}

6. f: all reals

f 9: x Þ 0, since f 9(x) 5 }
2
5

}x23/5

7. Left end behavior model: 0
Right end behavior model: 2x2ex

Horizontal asymptote: y 5 0

8. Left end behavior model: x2e2x

Right end behavior model: 0
Horizontal asymptote: y 5 0

9. Left end behavior model: 0
Right end behavior model: 200
Horizontal asymptotes: y 5 0, y 5 200

10. Left end behavior model: 0
Right end behavior model: 375
Horizontal asymptotes: y 5 0, y 5 375

Section 4.3 Exercises
1. (a) Zero: x 5 61;

positive: (2`, 21) and (1, `);
negative: (21, 1)

(b) Zero: x 5 0;
positive: (0, `);
negative: (2`, 0)

2. (a) Zero: x < 0, 61.25;
positive: (21.25, 0) and (1.25, `);
negative: (2`, 21.25) and (0, 1.25)

(b) Zero: x < 60.7;
positive: (2`, 20.7) and (0.7, `);
negative: (20.7, 0.7)

3. (a) (2`, 22] and [0, 2]

(b) [22, 0] and [2, `)

(c) Local maxima: x 5 22 and x 5 2;
local minimum: x 5 0

4. (a) [22, 2]

(b) (2`, 22] and [2, `)

(c) Local maximum: x 5 2;
local minimum: x 5 22

5. (a) [0, 1], [3, 4], and [5.5, 6]

(b) [1, 3] and [4, 5.5]

(c) Local maxima: x 5 1, x 5 4 
(if f is continuous at x 5 4), and x 5 6;
local minima: x 5 0, x 5 3, and x 5 5.5

6. If f is continuous on the interval [0, 3]:

(a) [0, 3]

(b) Nowhere

(c) Local maximum: x 5 3;
local minimum: x 5 0

7. y9 5 2x 2 1

y0 5 2 (always positive: concave up)

Graphical support:

[24, 4] by [23, 3]

(a) 3}
1
2

}, `2
(b) 12`, }

1
2

}4
(c) (2`, `)

(d) Nowhere

(e) Local (and absolute) minimum at 1}
1
2

}, 2}
5
4

}2
(f) None
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Intervals x , 23 23 , x , 3 3 , x

Sign of 
(x 1 3)(x 2 3) 1 2 1

Intervals x , 22 22 , x , 0 0 , x , 2

Sign of 
x(x 1 2)(x 2 2) 2 1 2 1

2 , x

Intervals x , }
1
2

} x . }
1
2

}

Sign of y9 2 1

Behavior of y Decreasing Increasing



8. y9 5 26x2 1 12x 5 26x(x 2 2)

y0 5 212x 1 12 5 212(x 2 1)

Graphical support:

[24, 4] by [26, 6]

(a) [0, 2]

(b) (2`, 0] and [2, `)

(c) (2`, 1)

(d) (1, `)

(e) Local maximum: (2, 5);
local minimum: (0, 23)

(f) At (1, 1)

9. y9 5 8x3 2 8x 5 8x(x 2 1)(x 1 1)

y0 5 24x2 2 8 5 8(Ï3wx 2 1)(Ï3wx 1 1)

Graphical support:

[24, 4] by [23, 3]

(a) [21, 0] and [1, `)

(b) (2`, 21] and [0, 1]

(c) 12`, 2}
Ï

1

3w
}2 and 1}

Ï
1

3w
}, `2

(d) 12}
Ï

1

3w
}, }

Ï
1

3w
}2

(e) Local maximum: (0, 1);
local (and absolute) minima: (21, 21) and (1, 21)

(f) 16}
Ï

1

3w
}, 2}

1
9

}2

10. y9 5 xe1/x(2x22) 1 e1/x 5 e1/x11 2 }
1
x

}2

y0 5 e1/x(x22) 1 11 2 }
1
x

}2e1/x(2x22) 5 }
e
x

1

3

/x
}

Graphical support:

[28, 8] by [26, 6]

(a) (2`, 0) and [1, `) (b) (0, 1]

(c) (0, `) (d) (2`, 0)

(e) Local minimum: (1, e)

(f) None

11. y9 5 x}
2Ï8w

1

2w xw2w
}(22x) 1 (Ï8w 2w xw2w)(1) 5 }

Ï
8

8w
2

2w
2x

xw

2

2w
}

y0 5

5 }
(
2
8
x
2

3 2

x2
2
)
4
3/
x
2} 5 }

2
(
x
8
(x
2

2 2

x2)
1
3
2
/2
)

}

Graphical support:

[23.02, 3.02] by [26.5, 6.5]

(a) [22, 2]

(b) [2Ï8w, 22] and [2, Ï8w]

(c) (2Ï8w, 0)

(d) (0, Ï8w)

(e) Local maxima: (2Ï8w, 0) and (2, 4);

local minima: (22, 24) and (Ï8w, 0)

Note that the local extrema at x 5 62 are also absolute

extrema.

(f) (0, 0)

(Ï8w 2w xw2w)(24x) 2 (8 2 2x2)}
2Ï8w

1

2w xw2w
}(22x)

}}}}}
(Ï8w 2w xw2w)2
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Intervals x , 1 x . 1

Sign of y0 1 2

Behavior of y Concave up Concave down

Intervals x , 0 0 , x , 1 1 , x

Sign of y9 1 2 1

Behavior of y Increasing Decreasing Increasing

Intervals x , 0 x . 0

Sign of y0 2 1

Behavior of y Concave down Concave up

Intervals x , 0 0 , x , 2 2 , x

Sign of y9 2 1 2

Behavior of y Decreasing Increasing Decreasing

Intervals x , 2}
Ï
1

3w
} 2}}

Ï
1

3w
} , x , }

Ï
1

3w
} }}

Ï
1

3w
} , x

Sign of y0 1 2 1

Behavior of y Concave up Concave down Concave up

Intervals x , 21 21 , x , 0 0 , x , 1

Sign of y9 2 1 2

Behavior of y Decreasing Increasing Decreasing Increasing

1

1 , x

Intervals 2Ï8w , x , 22 22 , x , 2 2 , x , Ï8w
Sign of y9 2 1 2

Behavior of y Decreasing Increasing Decreasing

Intervals 2Ï8w , x , 0 0 , x , Ï8w
Sign of y0 1 2

Behavior of y Concave up Concave down



12. y9 5 h

y0 5 h

Graphical support:

[24, 4] by [23, 6]

(a) (2`, 0) and [0, `)

(b) None

(c) (0, `)

(d) (2`, 0)

(e) Local minimum: (0, 1)

(f) Note that (0, 1) is not an inflection point because the graph has no tangent line at this point. There are no inflection points.

13. y9 5 12x2 1 42x 1 36 5 6(x 1 2)(2x 1 3)

y0 5 24x 1 42 5 6(4x 1 7)

Graphical support:

[24, 4] by [280, 20]

(a) (2`, 22] and 32}
3
2

}, `2
(b) 322, 2}

3
2

}4
(c) 12}

7
4

}, `2
(d) 12`, 2}

7
4

}2
(e) Local maximum: (22, 240); local minimum: 12}

3
2

}, 2}
16
4
1

}2
(f) 12}

7
4

}, 2}
32

8
1

}2

x , 0
x . 0

22,
2,

x , 0
x . 0

22x,
2x,
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Intervals x , 0 x . 0

Sign of y9 1 1

Behavior of y Increasing Increasing

Intervals x , 0 x . 0

Sign of y0 2 1

Behavior of y Concave down Concave up

Intervals x , 22 22 , x , 2}
3
2

} 2}
3
2

} , x

Sign of y9 1 2 1

Behavior of y Increasing Decreasing Increasing

Intervals x , 2}
7
4

} 2}
7
4

} , x

Sign of y0 2 1

Behavior of y Concave down Concave up



14. y9 5 24x3 1 12x2 2 4
Using grapher techniques, the zeros of y9 are x < 20.53, x < 0.65, and x < 2.88.

y0 5 212x2 1 24x 5 212x(x 2 2)

Graphical support:

[22, 4] by [220, 20]

(a) (2`, 20.53] and [0.65, 2.88]

(b) [20.53, 0.65] and [2.88, `)

(c) (0, 2)

(d) (2`, 0) and (2, `)

(e) Local maxima: (20.53, 2.45) and (2.88, 16.23);local minimum: (0.65, 20.68)
Note that the local maximum at x < 2.88 is also an absolute maximum.

(f) (0,1) and (2, 9)

15. y9 5 }
2
5

}x24/5

y0 5 2}
2
8
5
}x29/5

Graphical support:

[26, 6] by [21.5, 7.5]

(a) (2`, `)

(b) None

(c) (2`, 0)

(d) (0, `)

(e) None

(f) (0, 3)

16. y9 5 2}
1
3

}x22/3
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Intervals x , 0 0 , x

Sign of y0 1 2

Behavior of y Concave up Concave down

Intervals x , 0 0 , x

Sign of y9 1 1

Behavior of y Increasing Increasing

Intervals x , 0 0 , x , 2 2 , x

Sign of y0 2 1 2

Behavior of y Concave down Concave up Concave down

Intervals x , 20.53 20.53 , x , 0.65 0.65 , x , 2.88

Sign of y9 1 2 1

Behavior of y Increasing Decreasing Increasing Decreasing

2

2.88 , x

Intervals x , 0 0 , x

Sign of y9 2 2

Behavior of y Decreasing Decreasing



y0 5 }
2
9

}x25/3

Graphical support:

[28, 8] by [0, 10]

(a) None

(b) (2`, `)

(c) (0, `)

(d) (2`, 0)

(e) None

(f) (0, 5)

17. This problem can be solved using either graphical or analytic methods. For a graphical solution, use NDER to obtain the graphs
shown.
y y9 y0

[210, 20] by [0, 5] [210, 20] by [0, 0.3] [210, 20] by [20.02, 0.02]

An analytic solution follows.

y9 5

5

5 }
(ex 1

3e
3

1.

e

8

0

x

.8x)2}

Since y9 . 0 for all x, y is increasing for all x.

y0 5

5

5

5

Solve y0 5 0: 3 2 e0.2x 5 0

0.2x 5 ln 3

x 5 5 ln 3

0.6(3 2 e0.2x)e2.6x

}}
(ex 1 3e0.8x)3

(20.6ex 1 1.8e0.8x)e1.8x

}}}
(ex 1 3e0.8x)3

(ex 1 3e0.8x)(5.4e1.8x) 2 (6e1.8x)(ex 1 2.4e0.8x)
}}}}}

(ex 1 3e0.8x)3

(ex 1 3e0.8x)2(5.4e1.8x) 2 (3e1.8x)(2)(ex 1 3e0.8x)(ex 1 2.4e0.8x)
}}}}}}}

(ex 1 3e0.8x)4

5e2x 1 15e1.8x 2 5e2x 2 12e1.8x

}}}}
(ex 1 3e0.8x)2

(ex 1 3e0.8x)(5ex) 2 5ex(ex 1 2.4e0.8x)
}}}}

(ex 1 3e0.8x)2
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Intervals x , 5 ln 3 5 ln 3 , x

Sign of y0 1 2

Behavior of y Concave up Concave down

Intervals x , 0 0 , x

Sign of y0 2 1

Behavior of y Concave down Concave up



17. continued

(a) (2`, `)

(b) None

(c) (2`, 5 ln 3) < (2`, 5.49)

(d) (5 ln 3, `) < (5.49, `)

(e) None

(f) 15 ln 3, }
5
2

}2 < (5.49, 2.50)

18. This problem can be solved using either graphical or analytic methods. For a graphical solution, use NDER to obtain the graphs
shown.
y y9 y0

[26, 10] by [0, 4] [26, 10] by [0, 0.6] [26, 10] by [20.15, 0.15]

An analytic solution follows.

y 5 }
2e2x

8
1

e2

5

x

e21.5x} 5 }
2 1 5

8
e20.5x}

y9 5

5 }
(2 1

20
5
e
e

2

2

0.

0

5

.

x

5x)2}

Since y9 . 0 for all x, y is increasing for all x.

y0 5

5

5

Solve y0 5 0: 5e20.5x 2 2 5 0

e20.5x 5 }
2
5

}

20.5x 5 ln }
2
5

}

x 5 22 ln }
2
5

} 5 2 ln }
5
2

}

(a) (2`, `)

(b) None

(c) 12`, 2 ln }
5
2

}2 < (2`, 1.83)

(d) 12 ln }
5
2

}, `2 < (1.83, `)

(e) None

(f) 12 ln }
5
2

}, 22 < (1.83, 2)

10e20.5x(5e20.5x 2 2)
}}}

(2 1 5e20.5x)3

(2 1 5e20.5x)(10e20.5x) 2 (40e20.5x)(22.5e20.5x)
}}}}}}

(2 1 5e20.5x)3

(2 1 5e20.5x)2(210e20.5x) 2 (20e20.5x)(2)(2 1 5e20.5x)(22.5e20.5x)
}}}}}}}

(2 1 5e20.5x)4

(2 1 5e20.5x)(0) 2 (8)(22.5e20.5x)
}}}}

(2 1 5e20.5x)2
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Intervals x , 2 ln }
5
2

} 2 ln }
5
2

} , x

Sign of y0 1 2

Behavior of y Concave up Concave down



19. y9 5 h

y0 5 h

Graphical support:

[22, 3] by [–5, 3]

(a) (2`, 1)

(b) [1, `)

(c) None

(d) (1, `)

(e) None

(f) None

20. y9 5 ex

y0 5 ex

Since y9 and y0 are both positive on the entire domain, y is increasing and concave up on the entire domain.

Graphical support:

[0, 2p] by [0, 20]

(a) [0, 2p]

(b) None

(c) (0, 2p)

(d) None

(e) Local (and absolute) maximum: (2p, e2p); local (and absolute) minimum: (0, 1)

(f) None

21. y9 5 xe1/x2
(22x23) 1 (e1/x2

)(1)

5 e1/x2
(1 2 2x22) 5 e1/x21}x

2

x
2
2

2
}2

x , 1
x . 1

0,
22,

x , 1
x . 1

2,
22x,
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Intervals x , 1 1 , x

Sign of y9 1 2

Behavior of y Increasing Decreasing

Intervals x , 1 1 , x

Sign of y0 0 2

Behavior of y Linear Concave down

Intervals x , 2Ï2w 2Ï2w , x , 0 0 , x , Ï2w
Sign of y9 1 2 2

Behavior of y Increasing Decreasing Decreasing Increasing

1

Ï2w , x



21. continued

y0 5 (e1/x2
)(4x23) 1 (1 2 2x22)(e1/x2

)(22x23)

5 (e1/x2
)(2x23 1 4x25)

5 2e1/x21}x
2

x
1
5

2
}2

Graphical support:

[212, 12] by [29, 9]

(a) (2`, 2Ï2w] and [Ï2w, `)

(b) [2Ï2w, 0) and (0, Ï2w]

(c) (0, `)

(d) (2`, 0)

(e) Local maximum: (2Ï2w, 2Ï2wew) < (21.41, 22.33); local minimum: (Ï2w, Ï2wew) < (1.41, 2.33)

(f) None

22. This problem can be solved using either graphical or analytic methods. For a graphical solution, use NDER to obtain the graphs
shown.
y y9 y0

[24.7, 4.7] by [23, 11] [24.7, 4.7] by [210, 10] [24.7, 4.7] by [210, 10]

An analytic solution follows.

y9 5 x2}
2Ï9w

1

2w xw2w
}(22x) 1 Ï9w 2w xw2w(2x)

5 }
2

Ï
3x

9w

3

2w
1

xw
1

2w
8x

} 5 }
2

Ï
3x

9w
(x

2w

2 2

xw2w
6)

}

y0 5

5

5
6x4 2 81x2 1 162
}}

(9 2 x2)3/2

(9 2 x2)(29x2 1 18) 1 (23x3 1 18x)(x)
}}}}}

(9 2 x2)3/2

(Ï9w 2w xw2w)(29x2 1 18) 2 (23x3 1 18x)}
2Ï9w

1

2w xw2w
}(22x)

}}}}}}
(Ï9w 2w xw2w)2
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Intervals x , 0 0 , x

Sign of y0 2 1

Behavior of y Concave down Concave up

Intervals 23 , x , 2Ï6w 2Ï6w , x , 0 0 , x , Ï6w
Sign of y9 1 2 1

Behavior of y Increasing Decreasing Increasing Decreasing

2

Ï6w , x , 3



Find the zeros of y0:

5 0

2x4 2 27x2 1 54 5 0

x2 5 5 }
27 6

4
3Ï3w3w
}

x 5 6!}
2§7§ 2§4

3§Ï§3w§3w
}§ < 61.56

Note that we do not use x 5 6!}
2§7§ 1§4

3§Ï§3w§3w
}§ < 63.33, because these values are outside of the domain.

(a) [23, 2Ï6w] and [0, Ï6w] or, <[23, 22.45] 
and [0, 2.45]

(b) [2Ï6w, 0] and [Ï6w, 3] or, <[22.45, 0] and [2.45, 3]

(c) Approximately (21.56, 1.56)

(d) Approximately (23, 21.56) and (1.56, 3)

(e) Local maxima: (6Ï6w, 6Ï3w) < (62.45, 10.39);
local minima: (0, 0) and (63, 0)

(f) <(61.56, 6.25)

23. y9 5 }
1 1

1
x2}

Since y9 . 0 for all x, y is always increasing.

y0 5 }
d
d
x
}(1 1 x2)21 5 2(1 1 x2)22(2x) 5 }

(1
2

1

2
x
x
2)2}

Graphical support:

[24, 4] by [22, 2]

(a) (2`, `)

(b) None

(c) (2`, 0)

(d) (0, `)

(e) None

(f) (0, 0)

27 6 Ï2w7w2w2w 4w(2w)(w5w4w)w
}}}

2(2)

3(2x4 2 27x2 1 54)
}}}

(9 2 x2)3/2
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Intervals 23 , x , 21.56 21.56 , x , 1.56 1.56 , x , 3

Sign of y0 2 1 2

Behavior of y Concave down Concave up Concave down

Intervals x , 0 0 , x

Sign of y0 1 2

Behavior of y Concave up Concave down



24. y 5 x3/4(5 2 x) 5 5x3/4 2 x7/4

y9 5 }
1
4
5
}x21/4 2 }

7
4

}x3/4 5 }
15

4x
2

1/4
7x

}

y0 5 2}
1
1

5
6
}x25/4 2 }

2
1

1
6
}x21/4

5 }
23

1
(
6
7
x
x

5
1
/4

5)
}

Since y0 , 0 for all x . 0, the graph of y is concave down
for x . 0.

Graphical support:

[0, 8] by [26, 6]

(a) 30, }
1
7
5
}4

(b) 3}
1
7
5
}, `2

(c) None

(d) (0, `)

(e) Local (and absolute) maximum:

1}
1
7
5
}, 1}

1
7
5
}2

3/4

? }
2
7
0
}2 < 1}

1
7
5
}, 5.062;

local minimum: (0, 0)

(f) None

25. y 5 x1/3(x 2 4) 5 x4/3 2 4x1/3

y9 5 }
4
3

}x1/3 2 }
4
3

}x22/3 5 }
4
3
x
x
2
2/3

4
}

y0 5 }
4
9

}x22/3 1 }
8
9

}x25/3 5 }
4
9
x
x
1
5/3

8
}

Graphical support:

[24, 8] by [26, 8]

(a) [1, `)

(b) (2`, 1]

(c) (2`, 22) and (0, `)

(d) (22, 0)

(e) Local minimum: (1, 23)

(f) (22, 6Ï
3

2w) < (22, 7.56) and (0, 0)

26. y 5 x1/4(x 1 3) 5 x5/4 1 3x1/4

y9 5 }
5
4

}x1/4 1 }
3
4

}x23/4 5 }
5
4
x
x
1
3/4

3
}

Since y9 . 0 for all x . 0, y is always increasing on its

domain x $ 0.

y0 5 }
1
5
6
}x23/4 2 }

1
9
6
}x27/4 5 }

5
1
x
6x

2
7/4

9
}

Graphical support:

[0, 6] by [0, 12]

(a) [0, `)

(b) None

(c) 1}
9
5

}, `2
(d) 10, }

9
5

}2
(e) Local (and absolute) minimum: (0, 0)

(f) 1}
9
5

}, }
2
5
4
} ? !4 }

9
5

}§2 < 1}
9
5

}, 5.562
27. We use a combination of analytic and grapher techniques to

solve this problem. Depending on the viewing window 

chosen, graphs obtained using NDER may exhibit strange

behavior near x 5 2 because, for example,

NDER (y, 2) < 1,000,000 while y9 is actually undefined at

x 5 2. The graph of y 5}
x3 2 2

x
x
2

2 1

2
x 2 1

} is shown below.

[24,7, 4.7] by [25, 15]
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Intervals 0 , x , }
1
7
5
} }

1
7
5
} , x

Sign of y9 1 2

Behavior of y Increasing Decreasing

Intervals x , 0 0 , x , 1 1 , x

Sign of y9 2 2 1

Behavior of y Decreasing Decreasing Increasing

Intervals x , 22 22 , x , 0 0 , x

Sign of y0 1 2 1

Behavior of y Concave up Concave down Concave up

Intervals 0 , x , }
9
5

} }
9
5

} , x

Sign of y0 2 1

Behavior of y Concave down Concave up



y95

5

The graph of y9 is shown below.

[24,7, 4.7] by [210, 10]

The zeros of y9 are x < 0.15, x < 1.40, and x < 2.45.

y0 5

5

5

5

The graph of y0 is shown below.

[24,7, 4.7] by [210, 10]

Note that the discriminant of x2 2 5x 1 7 is (25)2 2 4(1)(7) 5 23, so the only solution of y0 5 0 is x 5 1.

(a) Approximately [0.15, 1.40] and [2.45, `)

(b) Approximately (2`, 0.15], [1.40, 2), and (2, 2.45]

(c) (2`, 1) and (2, `)

(d) (1, 2)

(e) Local maximum: <(1.40, 1.29);local minima: <(0.15, 0.48) and (2.45, 9.22)

(f) (1, 1)

2(x 2 1)(x2 2 5x 1 7)
}}}

(x 2 2)3

2x3 2 12x2 1 24x 2 14
}}}

(x 2 2)3

(x 2 2)(6x2 2 16x 1 8) 2 2(2x3 2 8x2 1 8x 2 1)
}}}}}}

(x 2 2)3

(x 2 2)2(6x2 2 16x 1 8) 2 (2x3 2 8x2 1 8x 2 1)(2)(x 2 2)
}}}}}}}

(x 2 2)4

2x3 2 8x2 1 8x 2 1
}}}

(x 2 2)2

(x 2 2)(3x2 2 4x 1 1) 2 (x3 2 2x2 1 x 2 1)(1)
}}}}}

(x 2 2)2
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Intervals x , 0.15 0.15 , x , 1.40 1.40 , x , 2

Sign of y9 2 1 2

Behavior of y Decreasing Increasing Decreasing Decreasing

2

2 , x , 2.45

Increasing

1

2.45 , x

Intervals x , 1 1 , x , 2 2 , x

Sign of y0 1 2 1

Behavior of y Concave up Concave down Concave up



28. y9 5 5 }
(
2

x2
x2

1

1

1)
1
2}

y0 5

5

5 }
(
2
x
x
2

3

1

2

1
6
)
x
3} 5 }

2
(
x
x
(
2
x
1

2 2

1)
3
3
)

}

Graphical support:

[24.7, 4.7] by [20.7, 0.7]

(a) [21, 1]

(b) (2`, 21] and [1, `)

(c) (2Ï3w, 0) and (Ï3w, `)

(d) (2`, 2Ï3w) and (0, Ï3w)

(e) Local maximum: 11, }
1
2

}2;
local minimum: 121, 2}

1
2

}2
(f) (0, 0), 1Ï3w, }

Ï
4

3w
}2, and 12Ï3w, 2}

Ï
4

3w
}2

29. y9 5 (x 2 1)2(x 2 2)

y0 5 (x 2 1)2(1) 1 (x 2 2)(2)(x 2 1)
5 (x 2 1)[(x 2 1) 1 2(x 2 2)]
5 (x 2 1)(3x 2 5)

(a) There are no local maxima.

(b) There is a local (and absolute) minimum at x 5 2.

(c) There are points of inflection at x 5 1 and at x 5 }
5
3

}.

(x2 1 1)(22x) 2 4x(2x2 1 1)
}}}}

(x2 1 1)3

(x2 1 1)2(22x) 2 (2x2 1 1)(2)(x2 1 1)(2x)
}}}}}

(x2 1 1)4

(x2 1 1)(1) 2 x(2x)
}}}

(x2 1 1)2
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Intervals x , 1 1 , x , 2 2 , x

Sign of y9 2 2 1

Behavior of y Decreasing Decreasing Increasing

Intervals x , 2Ï3w 2Ï3w , x , 0 0 , x , Ï3w
Sign of y0 2 1 2

Behavior of y Concave down Concave up Concave down Concave up

1

Ï3w , x

Intervals x , 21 21 , x , 1 1 , x

Sign of y9 2 1 2

Behavior of y Decreasing Increasing Decreasing

Intervals x , 1 1 , x , }
5
3

} }
5
3

} , x

Sign of y0 1 2 1

Behavior of y Concave up Concave down Concave up



30. y9 5 (x 2 1)2(x 2 2)(x 2 4)

y0 5 }
d
d
x
}[(x 2 1)2(x2 2 6x 1 8)]

5 (x 2 1)2(2x 2 6) 1 (x2 2 6x 1 8)(2)(x 2 1)

5 (x 2 1)[(x 2 1)(2x 2 6) 1 2(x2 2 6x 1 8)]

5 (x 2 1)(4x2 2 20x 1 22)

5 2(x 2 1)(2x2 2 10x 111)

Note that the zeros of y0 are x 5 1 and

x 5 5 }
10 6

4

Ï1w2w
} 5 }

5 6

2

Ï3w
} < 1.63 or 3.37.

The zeros of y0 can also be found graphically, as shown.

[23, 7] by [28, 4]

(a) Local maximum at x 5 2

(b) Local minimum at x 5 4

(c) Points of inflection at x 5 1, at x < 1.63, and at x < 3.37.

31.

32. y

x

y = f(x)

y = f ′(x)

y = f ′′(x)

P

0

y

x

y = f(x)
y = f ′(x)

y = f ′′(x)

P

10 6 Ï1w0w2w2w 4w(2w)(w1w1w)w
}}}

4
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Intervals x , 1 1 , x , 2 2 , x , 4

Sign of y9 1 1 2

Behavior of y Increasing Increasing Decreasing Increasing

1

4 , x

Intervals x , 1 1 , x , 1.63 1.63 , x , 3.37

Sign of y0 2 1 2

Behavior of y Concave down Concave up Concave down Concave up

1

3.37 , x



33. (a) Absolute maximum at (1, 2);
absolute minimum at (3, 22)

(b) None

(c) One possible answer:

34. (a) Absolute maximum at (0, 2);
absolute minimum at (2, 21) and (22, 21)

(b) At (1, 0) and (21, 0)

(c) One possible answer:

(d) Since f is even, we know f (3) 5 f (23). By the 
continuity of f, since f (x) , 0 when 2 , x , 3, we
know that f (3) # 0, and since f (2) 5 21 and f 9(x) . 0
when 2 , x , 3, we know that f (3) . 21. In 
summary, we know that f (3) 5 f (23), 21 , f (3) # 0,
and 21 , f (23) # 0.

35.

36.

37. (a) v(t) 5 s9(t) 5 2t 2 4

(b) a(t) 5 v9(t) 5 2

(c) It begins at position 3 moving in a negative direction. It
moves to position 21 when t 5 2, and then changes
direction, moving in a positive direction thereafter.

38. (a) v(t) 5 s9(t) 5 22 2 2t

(b) a(t) 5 v9(t) 5 22

(c) It begins at position 6 and moves in the negative 
direction thereafter.

39. (a) v(t) 5 s9(t) 5 3t2 2 3

(b) a(t) 5 v9(t) 5 6t

(c) It begins at position 3 moving in a negative direction. It
moves to position 1 when t 5 1, and then changes
direction, moving in a positive direction thereafter.

40. (a) v(t) 5 s9(t) 5 6t 2 6t2

(b) a(t) 5 v9(t) 5 6 2 12t

(c) It begins at position 0. It starts moving in the positive
direction until it reaches position 1 when t 5 1, and
then it changes direction. It moves in the negative
direction thereafter.

41. (a) The velocity is zero when the tangent line is horizontal,
at approximately t 5 2.2, t 5 6, and t 5 9.8.

(b) The acceleration is zero at the inflection points,
approximately t 5 4, t 5 8, and t 5 11.

42. (a) The velocity is zero when the tangent line is horizontal,
at approximately t 5 20.2, t 5 4, and t 5 12.

(b) The acceleration is zero at the inflection points,
approximately t 5 1.5, t 5 5.2, t 5 8, t 5 11,
and t 5 13.

43. No. f must have a horizontal tangent at that point, but f
could be increasing (or decreasing), and there would be no
local extremum. For example, if f (x) 5 x3,
f 9(0) 5 0 but there is no local extremum at x 5 0.

44. No. f 0(x) could still be positive (or negative) on both sides
of x 5 c, in which case the concavity of the function would
not change at x 5 c. For example, if f (x) 5 x4, then 
f 0(0) 5 0, but f has no inflection point at x 5 0.

45. One possible answer:

46. One possible answer:

y

x

5

–5

5–5

y

x

5

–5

5–5

y

5
4
3
2
1

–1
–2
–3

x
32

y

4

x
654321

y = f(x)

3

2

1

–1

y

2

–1

–2

x
3–3

y = f(x)

y

2

1

–1

–2

x
321

y = f(x)
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47. One possible answer:

48. One possible answer:

49. (a) Regression equation:

y 5

[0, 8] by [2400, 2300]

(b) At approximately x 5 3.868 (late in 1996), when the
sales are about 1081 million dollars/year

(c) 2161.45 million dollars/year

50. (a) In exercise 13, a 5 4 and b 5 21, so 2}
3
b
a
} 5 2}

7
4

},

which is the x-value where the point of inflection

occurs. The local extrema are at x 5 22 and x 5 2}
3
2

},

which are symmetric about x 5 2}
7
4

}.

(b) In exercise 8, a 5 22 and b 5 6, so 2}
3
b
a
} 5 1, which

is the x-value where the point of inflection occurs. The

local extrema are at x 5 0 and x 5 2, which are 

symmetric about x 5 1.

(c) f 9(x) 5 3ax2 1 2bx 1 c and 
f 0(x) 5 6ax 1 2b.
The point of inflection will occur where 

f 0(x) 5 0, which is at x 5 2}
3
b
a
}.

If there are local extrema, they will occur at the zeros
of f 9(x). Since f 9(x) is quadratic, its graph is a parabola
and any zeros will be symmetric about the vertex which
will also be where f 0(x) 5 0.

51. (a) f 9(x) 5

5

5 ,

so the sign of f 9(x) is the same as the sign of abc.

(b) f 0(x) 5

5

5 2

Since a . 0, this changes sign when x 5 }
ln

b
a

} due to

the ebx 2 a factor in the numerator, and f (x) has a point

of inflection at that location.

52. (a) f 9(x) 5 4ax3 1 3bx2 1 2cx 1 d
f 0(x) 5 12ax2 1 6bx 1 2c
Since f 0(x) is quadratic, it must have 0, 1, or 2 zeros. If
f 0(x) has 0 or 1 zeros, it will not change sign and the
concavity of f (x) will not change, so there is no point
of inflection. If f 0(x) has 2 zeros, it will change sign
twice, and f (x) will have 2 points of inflection.

(b) If f has no points of inflection, then f 0(x) has 0 or 1
zeros, so the discriminant of f 0(x) is # 0. This gives
(6b)2 2 4(12a)(2c) # 0, or 3b2 # 8ac.
If f has 2 points of inflection, then f 0(x) has 2 zeros and
the inequality is reversed, so 3b2 . 8ac. In summary, f
has 2 points of inflection if and only if 3b2 . 8ac.

■ Section 4.4 Modeling and Optimization
(pp. 206–220)

Exploration 1 Constructing Cones

1. The circumference of the base of the cone is the 

circumference of the circle of radius 4 minus x, or 8p 2 x.

Thus, r 5 }
8p

2p

2 x
}. Use the Pythagorean Theorem to find h,

and the formula for the volume of a cone to find V.

2. The expression under the radical must be nonnegative, that

is, 16 2 1}8p

2p

2 x
}2

2
$ 0.

Solving this inequality for x gives: 0 # x # 16p.

[0, 16p] by [210, 40]

ab2cebx(ebx 2 a)
}}

(ebx 1 a)3

(ebx 1 a)(ab2cebx) 2 (abcebx)(2bebx)
}}}}

(ebx 1 a)3

(ebx 1 a)2(ab2cebx) 2 (abcebx)2(ebx 1 a)(bebx)
}}}}}

(ebx 1 a)4

abcebx

}}
(ebx 1 a)2

abce2bx

}}
(1 1 ae2bx)2

(1 1 ae2bx)(0) 2 (c)(2abe2bx)
}}}}

(1 1 ae2bx)2

2161.4541
}}}
1 1 28.1336e20.8627x

y

8

6

4

2

x
8642–2

–2

(2, 1)

(4, 4)

(6, 7)

y

x

10

–10

5–5

(–2, 8)

(0, 4)

(2, 0)
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3. The circumference of the original circle of radius 4 is 8p.
Thus, 0 # x # 8p.

[0, 8p] by [210, 40]

4. The maximum occurs at about x 5 4.61. The maximum
volume is about V 5 25.80.

5. Start with }
d
d
V
x
} 5 }

2
3
p
}rh}

d
d
x
r
} 1 }

p

3
}r2}

d
d
h
x
}. Compute }

d
d
x
r
} and }

d
d
h
x
},

substitute these values in }
d
d
V
x
}, set }

d
d
V
x
} 5 0, and solve for x to

obtain x 5 }
8(3 2

3

Ï6w)p
} < 4.61. 

Then V 5 }
128

2
p

7

Ï3w
} < 25.80.

Quick Review 4.4
1. y9 5 3x2 2 12x 1 12 5 3(x 2 2)2

Since y9 $ 0 for all x (and y9 . 0 for x Þ 2), y is 
increasing on (2`, `) and there are no local extrema.

2. y9 5 6x2 1 6x 2 12 5 6(x 1 2)(x 2 1)
y0 5 12x 1 6
The critical points occur at x 5 22 or x 5 1, since y9 5 0
at these points. Since y0(22) 5 218 , 0, the graph has a
local maximum at x 5 22. Since y0(1) 5 18 . 0, the graph
has a local minimum at x 5 1. In summary, there is a local
maximum at (22, 17) and a local minimum at (1, 210).

3. V 5 }
1
3

}pr2h 5 }
1
3

}p(5)2(8) 5 }
20

3
0p
} cm3

4. V 5 pr2h 5 1000

SA 5 2prh 1 2pr2 5 600

Solving the volume equation for h gives h 5 }
1
p

0
r
0
2
0

}.

Substituting into the surface area equation gives 

}
20

r
00
} 1 2pr2 5 600. Solving graphically, we have 

r < 211.14, r < 4.01, or r < 7.13. Discarding the negative

value and using h 5 }
1
p

0
r
0
2
0

} to find the corresponding values

of h, the two possibilities for the dimensions of the cylinder

are:

r < 4.01 cm and h < 19.82 cm, or,

r < 7.13 cm and h < 6.26 cm.

5. Since y 5 sin x is an odd function, sin (2a) 5 2sin a.

6. Since y 5 cos x is an even function, cos (2a) 5 cos a.

7. sin (p 2 a) 5 sin p cos a 2 cos p sin a
5 0 cos a 2 (21) sin a
5 sin a

8. cos (p 2 a) 5 cos p cos a 1 sin p sin a
5 (21) cos a 1 0 sin a
5 2cos a

9. x2 1 y2 5 4 and y 5 Ï3wx

x2 1 (Ï3wx)2 5 4

x2 1 3x2 5 4

4x2 5 4

x 5 61

Since y 5 Ï3wx, the solutions are:

x 5 1 and y 5 Ï3w, or, x 5 21 and y 5 2Ï3w.

In ordered pair notation, the solutions are (1, Ï3w) and

(21, 2Ï3w).

10. }
x
4

2
} 1 }

y
9

2
} 5 1 and y 5 x 1 3

}
x
4

2
} 1 }

(x 1

9
3)2

} 5 1

9x2 1 4(x 1 3)2 5 36

9x2 1 4x2 1 24x 1 36 5 36

13x2 1 24x 5 0

x(13x 1 24) 5 0

x 5 0 or x 5 2}
2
1
4
3
}

Since y 5 x 1 3, the solutions are:

x 5 0 and y 5 3, or, x 5 2}
2
1
4
3
} and y 5 }

1
1
5
3
}.

In ordered pair notation, the solutions are 

(0, 3) and 12}
2
1
4
3
}, }

1
1
5
3
}2.

Section 4.4 Exercises
1. Represent the numbers by x and 20 2 x, where 0 # x # 20.

(a) The sum of the squares is given by 
f (x) 5 x2 1 (20 2 x)2 5 2x2 2 40x 1 400. Then
f 9(x) 5 4x 2 40. The critical point and endpoints occur
at x 5 0, x 5 10, and x 5 20. Then f (0) 5 400,
f (10) 5 200, and f (20) 5 400. The sum of the squares
is as large as possible for the numbers 0 and 20, and is
as small as possible for the numbers 10 and 10.

Graphical support:

[0, 20] by [0, 450]

(b) The sum of one number plus the square root of the

other is given by g(x) 5 x 1 Ï2w0w 2w xw. Then 

g9(x) 5 1 2 }
2Ï2w

1

0w 2w xw
}. The critical point occurs when

2Ï2w0w 2w xw 5 1, so 20 2 x 5 }
1
4

} and x 5 }
7
4
9
}. Testing the

endpoints and critical point, we find 

g(0) 5 Ï2w0w < 4.47, g1}
7
4
9
}2 5 }

8
4
1
} 5 20.25, and 

g(20) 5 20.
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The sum is as large as possible when the numbers are

}
7
4
9
} and }

1
4

} 1summing }
7
4
9
} + !}

1
4

}§2, and is as small as 

possible when the numbers are 0 and 20 

(summing 0 + Ï2w0w).

Graphical support:

[0, 20] by [210, 25]

2. Let x and y represent the legs of the triangle, and note that

0 , x , 5. Then x2 1 y2 5 25, so y 5 Ï2w5w 2w xw2w (since 

y . 0). The area is A 5 }
1
2

}xy 5 }
1
2

}xÏ2w5w 2w xw2w, so 

}
d
d
A
x
} 5 }

1
2

}x}
2Ï2w5w

1

2w xw2w
}(22x) 1 }

1
2

}Ï2w5w 2w xw2w

5 }
2Ï

25

2w
2

5w 2w
2x2

xw2w
}.

The critical point occurs when 25 2 2x2 5 0, which means

x 5 }
Ï

5

2w
}, (since x . 0). This value corresponds to the

largest possible area, since }
d
d
A
x
} . 0 for 0 , x , }

Ï
5

2w
} and 

}
d
d
A
x
} , 0 for }

Ï
5

2w
} , x , 5. When x 5 }

Ï
5

2w
}, we have 

y 5 !2§5§ 2§ 1§}
Ï§

5

2w
}§2

2

§ 5 }
Ï

5

2w
} and 

A 5 }
1
2

}xy 5 }
1
2

}1}
Ï
5

2w
}2

2
5 }

2
4
5
}. Thus, the largest possible area is

}
2
4
5
} cm2, and the dimensions (legs) are }

Ï
5

2w
} cm by }

Ï
5

2w
} cm.

Graphical support:

[0, 5] by [22, 7]

3. Let x represent the length of the rectangle in inches (x . 0).

Then the width is }
1
x
6
} and the perimeter is 

P(x) 5 21x 1 }
1
x
6
}2 5 2x 1 }

3
x
2
}. 

Since P9(x) 5 2 2 32x22 5 }
2(x2

x
2
2

16)
} the critical point 

occurs at x 5 4. Since P9(x) , 0 for 0 , x , 4 and 

P9(x) . 0 for x . 0, this critical point corresponds to the

minimum perimeter. The smallest possible perimeter is 

P(4) 5 16 in., and the rectangle’s dimensions are 

4 in. by 4 in.

Graphical support:

[0, 20] by [0, 40]

4. Let x represent the length of the rectangle in meters 
(0 , x , 4). Then the width is 4 2 x and the area is 
A(x) 5 x(4 2 x) 5 4x 2 x 2. Since A9(x) 5 4 2 2x, the 
critical point occurs at x 5 2. Since A9(x) . 0 for 
0 , x , 2 and A9(x) , 0 for 2 , x , 4, this critical point
corresponds to the maximum area. The rectangle with the
largest area measures 2 m by 4 2 2 5 2m, so it is a square.

Graphical support:

[0, 4] by [21.5, 5]

5. (a) The equation of line AB is y 5 2x 1 1, so the 
y-coordinate of P is 2x 1 1.

(b) A(x) 5 2x(1 2 x)

(c) Since A9(x) 5 }
d
d
x
}(2x 2 2x2) 5 2 2 4x, the critical point

occurs at x 5 }
1
2

}. Since A9(x) . 0 for 0 , x , }
1
2

} and

A9(x) , 0 for }
1
2

} , x , 1, this critical point corresponds

to the maximum area. The largest possible area is

A1}
1
2

}2 5 }
1
2

} square unit, and the dimensions of the 

rectangle are }
1
2

} unit by 1 unit.

Graphical support:

[0, 1] by [20.5, 1]

6. If the upper right vertex of the rectangle is located at 
(x, 12 2 x2) for 0 , x , Ï1w2w, then the rectangle’s 
dimensions are 2x by 12 2 x2 and the area is 
A(x) 5 2x(12 2 x2) 5 24x 2 2x3. Then 
A9(x) 5 24 2 6x2 5 6(4 2 x2), so the critical point 
(for 0 , x , Ï1w2w) occurs at x 5 2. Since A9(x) . 0 for 
0 , x , 2 and A9(x) , 0 for 2 , x , Ï1w2w, this critical
point corresponds to the maximum area. The largest 
possible area is A(2) 5 32, and the dimensions are 4 by 8.

Graphical support:

[0, Ï1w2w] by [210, 40]
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7. Let x be the side length of the cut-out square (0 , x , 4).

Then the base measures 8 2 2x in. by 15 2 2x in.,

and the volume is 

V(x) 5 x(8 2 2x)(15 2 2x) 5 4x3 2 46x2 1 120x. Then

V9(x) 5 12x2 2 92x 1 120 5 4(3x 2 5)(x 2 6). Then the

critical point (in 0 , x , 4) occurs at x 5 }
5
3

}. Since 

V9(x) . 0 for 0 , x , }
5
3

} and V9(x) , 0 for }
5
3

} , x , 4, the

critical point corresponds to the maximum volume.

The maximum volume is V1}
5
3

}2 5 }
24

2
5
7

0
} < 90.74 in3, and the

dimensions are }
5
3

} in. by }
1
3
4
} in. by }

3
3
5
} in.

Graphical support:

[0, 4] by [225, 100]

8. Note that the values a and b must satisfy a2 1 b2 5 202

and so b 5 Ï4w0w0w 2w aw2w. Then the area is given by 

A 5 }
1
2

}ab 5 }
1
2

}aÏ4w0w0w 2w aw2w for 0 , a , 20, and 

}
d
d
A
a
} 5 }

1
2

}a1}
2Ï4w0w

1

0w 2w aw2w
}2(22a) 1 }

1
2

}Ï4w0w0w 2w aw2w

5 5 }
Ï

2

4w
0

0w
0

0w
2

2w
a

aw

2

2w
}. The critical point occurs

when a2 5 200. Since }
d
d
A
a
} . 0 for 0 , a , Ï2w0w0w and 

}
d
d
A
a
} , 0 for Ï2w0w0w , a , 20, this critical point corresponds

to the maximum area. Furthermore, if a 5 Ï2w0w0w then 

b 5 Ï4w0w0w 2w aw2w 5 Ï2w0w0w, so the maximum area occurs

when a 5 b.

Graphical support:

[0, 20] by [230, 110]

9. Let x be the length in meters of each side that adjoins the
river. Then the side parallel to the river measures 
800 2 2x meters and the area is 
A(x) 5 x(800 2 2x) 5 800x 2 2x2 for 0 , x , 400.
Therefore, A9(x) 5 800 2 4x and the critical point occurs at
x 5 200. Since A9(x) . 0 for 0 , x , 200 and A9(x) , 0
for 200 , x , 400, the critical point corresponds to the
maximum area. The largest possible area is 
A(200) 5 80,000 m2 and the dimensions are 200 m 
(perpendicular to the river) by 400 m (parallel to the river).

Graphical support:

[0, 400] by [225,000, 90,000]

10. If the subdividing fence measures x meters, then the 

pea patch measures x m by }
21

x
6

} m and the amount of fence

needed is f (x) 5 3x 1 2}
21

x
6

} 5 3x 1 432x21. Then 

f 9(x) 5 3 2 432x22 and the critical point (for x . 0)

occurs at x 5 12. Since f 9(x) , 0 for 0 , x , 12 and 

f 9(x) . 0 for x . 12, the critical point corresponds to the

minimum total length of fence. The pea patch will measure

12 m by 18 m (with a 12-m divider), and the total amount

of fence needed is f (12) 5 72 m.

Graphical support:

[0, 40] by [0, 250]

11. (a) Let x be the length in feet of each side of the square

base. Then the height is }
5
x
0
2
0

} ft and the surface area 

(not including the open top) is 

S(x) 5 x2 1 4x1}
5
x
0
2
0

}2 5 x2 1 2000x21. Therefore,

S9(x) 5 2x 2 2000x22 5 }
2(x3 2

x2
1000)
} and the critical

point occurs at x 5 10. Since S9(x) , 0 for 0 , x , 10

and S9(x) . 0 for x . 10, the critical point corresponds

to the minimum amount of steel used. The dimensions

should be 10 ft by 10 ft by 5 ft, where the height is 5 ft.

(b) Assume that the weight is minimized when the total
area of the bottom and the four sides is minimized.

2a2 1 (400 2 a2)
}}

2Ï4w0w0w 2w aw2w
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12. (a) Note that x2y 5 1125, so y 5 }
11

x
2
2
5

}. Then

c 5 5(x2 1 4xy) 1 10xy

5 5x2 1 30xy

5 5x2 1 30x1}11
x
2
2
5

}2
5 5x2 1 33,750x21

}
d
d

c
x
} 5 10x 2 33,750x22 5 }

10(x3 2

x2
3375)
}

The critical point occurs at x 5 15. Since }
d
d
c
x
} , 0 for 

0 , x , 15 and }
d
d

c
x
} . 0 for x . 15, the critical point

corresponds to the minimum cost. The values of x and

y are x 5 15 ft and y 5 5 ft.

(b) The material for the tank costs 5 dollars/sq ft and the
excavation charge is 10 dollars for each square foot of
the cross-sectional area of one wall of the hole.

13. Let x be the height in inches of the printed area. Then the

width of the printed area is }
5
x
0
} in. and the overall 

dimensions are x 1 8 in. by }
5
x
0
} 1 4 in. The amount of

paper used is 

A(x) 5 (x 1 8)1}
5
x
0
} 1 42 5 4x 1 82 1 }

40
x
0

} in2. Then

A9(x) 5 4 2 400x22 5 }
4(x2 2

x2
100)
} and the critical point

(for x . 0) occurs at x 5 10. Since A9(x) , 0 for 

0 , x , 10 and A9(x) . 0 for x . 10, the critical point

corresponds to the minimum amount of paper. Using 

x 1 8 and }
5
x
0
} 1 4 for x 5 10, the overall dimensions are 

18 in. high by 9 in. wide.

14. (a) s(t) 5 216t2 1 96t 1 112
v(t) 5 s9(t) 5 232t 1 96
At t 5 0, the velocity is v(0) 5 96 ft/sec.

(b) The maximum height occurs when v(t) 5 0, when 
t 5 3. The maximum height is s(3) 5 256 ft and it
occurs at t 5 3 sec.

(c) Note that 
s(t) 5 216t2 1 96t 1 112 5 216(t 1 1)(t 2 7),
so s 5 0 at t 5 21 or t 5 7. Choosing the positive
value of t, the velocity when s 5 0 is 
v(7) 5 2128 ft/sec.

15. We assume that a and b are held constant. Then 

A(u) 5 }
1
2

}ab sin u and A9(u) 5 }
1
2

}ab cos u. The critical point

(for 0 , u , p) occurs at u 5 }
p

2
}. Since A9(u) . 0 for 

0 , u , }
p

2
} and A9(u) , 0 for }

p

2
} , u , p, the critical point

corresponds to the maximum area. The angle that 

maximizes the triangle’s area is u 5 }
p

2
} (or 908).

16. Let the can have radius r cm and height h cm. Then 

pr2h 5 1000, so h 5 }
1
p

0
r
0
2
0

}. The area of material used is

A 5 pr2 1 2prh 5 pr2 1 }
20

r
00
}, so 

}
d
d
A
r
} 5 2pr 2 2000r22 5 }

2pr3 2

r2
2000
}. The critical point

occurs at r 5 !3 }
1§0

p§
0§0
}§ 5 10p21/3 cm. Since }

d
d
A
r
} , 0 for

0 , r , 10p21/3 and }
d
d
A
r
} . 0 for r . 10p21/3, the critical

point corresponds to the least amount of material used and

hence the lightest possible can. The dimensions are 

r 5 10p21/3 < 6.83 cm and h 5 10p21/3 < 6.83 cm. In

Example 2, because of the top of the can, the “best” design

is less big around and taller.

17. Note that pr2h 5 1000, so h 5 }
1
p

0
r
0
2
0

}. Then 

A 5 8r2 1 2prh 5 8r2 1 }
20

r
00
}, so 

}
d
d
A
r
} 5 16r 2 2000r22 5 }

16(r3

r
2
2

125)
}. The critical point

occurs at r 5 Ï
3

1w2w5w 5 5 cm. Since }
d
d
A
r
} , 0 for 0 , r , 5

and }
d
d
A
r
} . 0 for r . 5, the critical point corresponds to the

least amount of aluminum used or wasted and hence the

most economical can. The dimensions are r 5 5 cm and

h 5 }
4
p

0
}, so the ratio of h to r is }

p

8
} to 1.
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18. (a) The base measures 10 2 2x in. by }
15 2

2
2x

} in., so the

volume formula is 

V(x) 5 5 2x3 2 25x2 1 75x.

(b) We require x . 0, 2x , 10, and 2x , 15. Combining
these requirements, the domain is the interval (0, 5).

[0, 5] by [220, 80]

(c)

[0, 5] by [220, 80]

The maximum volume is approximately 66.02 in3 when
x < 1.96 in.

(d) V9(x) 5 6x2 2 50x 1 75

The critical point occurs when V9(x) 5 0, at 

x 5 5 }
50 6

1

Ï
2

7w0w0w
}

5 }
25 6

6
5Ï7w
}, that is, x < 1.96 or x < 6.37. We discard

the larger value because it is not in the domain. Since

V0(x) 5 12x 2 50, which is negative when x < 1.96,

the critical point corresponds to the maximum volume.

The maximum volume occurs when 

x 5 }
25 2

6
5Ï7w
} < 1.96, which confirms the result in (c).

19. (a) The “sides” of the suitcase will measure 24 2 2x in. by
18 2 2x in. and will be 2x in. apart, so the volume 
formula is 
V(x) 5 2x(24 2 2x)(18 2 2x) 5 8x3 2 168x2 1 864x.

(b) We require x . 0, 2x , 18, and 2x , 24. Combining
these requirements, the domain is the interval (0, 9).

[0, 9] by [2400, 1600]

(c)

[0, 9] by [2400, 1600]

The maximum volume is approximately 1309.95 in3

when x < 3.39 in.

(d) V9(x) 5 24x2 2 336x 1 864 5 24(x2 2 14x 1 36)
The critical point is at 

x 5 5 }
14 6

2

Ï5w2w
} 5 7 6 Ï1w3w,

that is, x < 3.39 or x < 10.61. We discard the larger
value because it is not in the domain. Since 
V0(x) 5 24(2x 2 14), which is negative when x < 3.39,
the critical point corresponds to the maximum volume.
The maximum value occurs at x 5 7 2 Ï1w3w < 3.39,
which confirms the results in (c).

(e) 8x3 2 168x2 1 864x 5 1120
8(x3 2 21x2 1 108x 2 140) 5 0
8(x 2 2)(x 2 5)(x 2 14) 5 0
Since 14 is not in the domain, the possible values of x
are x 5 2 in. or x 5 5 in.

(f) The dimensions of the resulting box are 2x in.,
(24 2 2x) in., and (18 2 2x) in. Each of these 
measurements must be positive, so that gives the
domain of (0, 9).

20.

Let x be the distance from the point on the shoreline nearest

Jane’s boat to the point where she lands her boat. Then she

needs to row Ï4w 1w xw2w mi at 2 mph and walk 6 2 x mi at 

5 mph. The total amount of time to reach the village is

f (x) 5 }
Ï4w

2
1w xw2w
} 1 }

6 2

5
x

} hours (0 # x # 6). Then 

f 9(x) 5 }
1
2

} }
2Ï4w

1

1w xw2w
}(2x) 2 }

1
5

} 5 }
2Ï4w

x

1w xw2w
} 2 }

1
5

}. Solving

f 9(x) 5 0, we have:

}
2Ï4w

x

1w xw2w
} 5 }

1
5

}

5x 5 2Ï4w 1w xw2w

25x2 5 4(4 1 x2)

21x2 5 16

x 5 6}
Ï

4

2w1w
}

We discard the negative value of x because it is not in the

domain. Checking the endpoints and critical point, we have

f (0) 5 2.2, f 1}Ï
4

2w1w
}2 < 2.12, and f(6) < 3.16. Jane should

land her boat }
Ï

4

2w1w
} < 0.87 miles down the shoreline from

the point nearest her boat.

Jane

Village
6 mi

2 mi

6 – xx

Ïwwww4 + x2 miles

14 6 Ï(2w1w4w)2w 2w 4w(1w)(w3w6w)w
}}}

2(1)

50 6 Ï(2w5w0w)2w 2w 4w(6w)(w7w5w)w
}}}

2(6)

x(10 2 2x)(15 2 2x)
}}}

2
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21. If the upper right vertex of the rectangle is located at 
(x, 4 cos 0.5x) for 0 , x , p, then the rectangle has width
2x and height 4 cos 0.5x, so the area is A(x) 5 8x cos 0.5x.
Then   A9(x) 5 8x(20.5 sin 0.5x) 1 8(cos 0.5x)(1)

5 24x sin 0.5x 1 8 cos 0.5x. 
Solving A9(x) graphically for 0 , x , p, we find that 
x < 1.72. Evaluating 2x and 4 cos 0.5x for x < 1.72, the
dimensions of the rectangle are approximately 
3.44 (width) by 2.61 (height), and the maximum area is
approximately 8.98.

22. Let the radius of the cylinder be r cm, 0 , r , 10. Then

the height is 2Ï1w0w0w 2w rw2w and the volume is 

V(r) 5 2pr2Ï1w0w0w 2w rw2w cm3. Then

V9(r) 5 2pr21}
2Ï1w0w

1

0w 2w rw2w
}2(22r) 1 (2pÏ1w0w0w 2w rw2w)(2r)

5

5

The critical point for 0 , r , 10 occurs at 

r 5 !}
2§0

3§
0

}§ 5 10!}
2
3

}§. Since V9(r) . 0 for 

0 , r , 10!}
2
3

}§ and V9(r) , 0 for 10!}
2
3

}§ < r < 10, the

critical point corresponds to the maximum volume. The

dimensions are r 5 10!}
2
3

}§ < 8.16 cm and 

h 5 }
Ï
20

3w
} < 11.55 cm, and the volume is 

}
4

3

0

Ï
00

3w
p

} < 2418.40 cm3.

23. (a) f 9(x) 5 x(2e2x) 1 e2x(1) 5 e2x(1 2 x)
The critical point occurs at x 5 1. Since f 9(x) . 0 for 
0 # x , 1 and f 9(x) , 0 for x . 1, the critical point
corresponds to the maximum value of f. The absolute
maximum of f occurs at x 5 1.

(b) To find the values of b, use grapher techniques to solve
xe2x 5 0.1e20.1, xe2x 5 0.2e20.2, and so on. To find
the values of A, calculate (b 2 a)ae2a, using the
unrounded values of b . (Use the list features of the
grapher in order to keep track of the unrounded values
for part (d).)

(c)

[0, 1.1] by [20.2, 0.6]

(d) Quadratic:
A < 20.91a2 1 0.54a 1 0.34

[20.5, 1.5] by [20.2, 0.6]

Cubic:
A < 1.74 a3 2 3.78a2 1 1.86a 1 0.19

[20.5, 1.5] by [20.2, 0.6]

Quartic:
A < 21.92a4 1 5.96a3 2 6.87a2 1 2.71a 1 0.12

[20.5, 1.5] by [20.2, 0.6]

(e) Quadratic:
’

[20.5, 1.5] by [20.2, 0.6]

According to the quadratic regression equation, the
maximum area occurs at a < 0.30 and is approximately
0.42.

Cubic:

[20.5, 1.5] by [20.2, 0.6]

According to the cubic regression equation, the 
maximum area occurs at a < 0.31 and is approximately
0.45.

Quartic:

[20.5, 1.5] by [20.2, 0.6]

According to the quartic regression equation the 
maximum area occurs at a < 0.30 and is approximately
0.46.

2pr(200 2 3r2)
}}

Ï1w0w0w 2w rw2w

22pr3 1 4pr(100 2 r2)
}}}

Ï1w0w0w 2w rw2w
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a b A

0.1 3.71 0.33

0.2 2.86 0.44

0.3 2.36 0.46

0.4 2.02 0.43

0.5 1.76 0.38

0.6 1.55 0.31

0.7 1.38 0.23

0.8 1.23 0.15

0.9 1.11 0.08

1.0 1.00 0.00



24. (a) f 9(x) is a quadratic polynomial, and as such it can have
0, 1, or 2 zeros. If it has 0 or 1 zeros, then its sign
never changes, so f (x) has no local extrema.
If f 9(x) has 2 zeros, then its sign changes twice, and
f (x) has 2 local extrema at those points.

(b) Possible answers:
No local extrema: y 5 x3;
2 local extrema: y 5 x3 2 3x

25. Let x be the length in inches of each edge of the square
end, and let y be the length of the box. Then we require
4x 1 y # 108. Since our goal is to maximize volume, we
assume 4x 1 y 5 108 and so y 5 108 2 4x. The volume is
V(x) 5 x2(108 2 4x) 5 108x2 2 4x3, where 0 , x , 27.
Then V9 5 216x 2 12x2 5 212x(x 2 18), so the critical
point occurs at x 5 18 in. Since V9(x) . 0 for 0 , x , 18
and V9(x) , 0 for 18 , x , 27, the critical point 
corresponds to the maximum volume. The dimensions of
the box with the largest possible volume are 
18 in. by 18 in. by 36 in.

26. Since 2x 1 2y 5 36, we know that y 5 18 2 x. In part (a),

the radius is }
2
x
p
} and the height is 18 2 x, and so the 

volume is given by 

pr2h 5 p1}
2
x
p
}2

2
(18 2 x) 5 }

4
1
p
}x2(18 2 x). In part (b), the

radius is x and the height is 18 2 x, and so the volume is

given by pr2h 5 px2(18 2 x). Thus, each problem requires

us to find the value of x that maximizes f (x) 5 x2(18 2 x)

in the interval 0 , x , 18, so the two problems have the

same answer.

To solve either problem, note that f (x) 5 18x2 2 x3 and so
f 9(x) 5 36x 2 3x2 5 23x(x 2 12). The critical point
occurs at x 5 12. Since f 9(x) . 0 for 0 , x , 12 and 
f 9(x) , 0 for 12 , x , 18, the critical point corresponds to
the maximum value of f (x). To maximize the volume in
either part (a) or (b), let x 5 12 cm and y 5 6 cm.

27. Note that h2 1 r2 5 3 and so r 5 Ï3w 2w hw2w. Then the

volume is given by V 5 }
p

3
}r2h 5 }

p

3
}(3 2 h2)h 5 ph 2 }

p

3
}h3

for 0 , h , Ï3w, and so }
d
d
V
h
} 5 p 2 ph2 5 p(1 2 h2). The 

critical point (for h . 0) occurs at h 5 1. Since }
d
d
V
h
} . 0 for

0 , h , 1 and }
d
d
V
h
} , 0 for 1 , h , Ï3w, the critical point 

corresponds to the maximum volume. The cone of greatest

volume has radius Ï2w m, height 1 m, and volume }
2
3
p
} m3.

28. (a) We require f (x) to have a critical point at x 5 2. Since

f 9(x) 5 2x 2 ax22, we have f 9(2) 5 4 2 }
a
4

} and so our

requirement is that 4 2 }
a
4

} 5 0. Therefore, a 5 16. To

verify that the critical point corresponds to a local 

minimum, note that we now have f 9(x) 5 2x 2 16x22

and so f 0(x) 5 2 1 32x23, so f 0(2) 5 6, which is 

positive as expected. So, use a 5 16.

(b) We require f 0(1) 5 0. Since f 0(x) 5 2 1 2ax23, we
have f 0(1) 5 2 1 2a, so our requirement is that 
2 1 2a 5 0. Therefore, a 5 21. To verify that x 5 1 is
in fact an inflection point, note that we now have
f 0(x) 5 2 2 2x23, which is negative for 0 , x , 1 and

positive for x . 1. Therefore, the graph of f is concave
down in the interval (0, 1) and concave up in the 
interval (1, `), So, use a 5 21.

29. f 9(x) 5 2x 2 ax22 5 }
2x3

x
2
2

a
}, so the only sign change in

f 9(x) occurs at x 5 1}
a
2

}2
1/3

, where the sign changes from

negative to positive. This means there is a local 

minimum at that point, and there are no local maxima.

30. (a) Note that f 9(x) 5 3x2 1 2ax 1 b. We require 
f 9(21) 5 0 and f 9(3) 5 0, which give 3 2 2a 1 b 5 0
and 27 1 6a 1 b 5 0. Subtracting the first equation
from the second, we have 24 1 8a 5 0 and so a 5 23.
Substituting into the first equation, we have 9 1 b 5 0,
so b 5 29. Therefore, our equation for 
f (x) is f (x) 5 x3 2 3x2 2 9x. To verify that we have a
local maximum at x 5 21 and a local minimum at 
x 5 3, note that 
f 9(x) 5 3x2 2 6x 2 9 5 3(x 1 1)(x 2 3), which is 
positive for x , 21, negative for 21 , x , 3, and 
positive for x . 3. So, use a 5 23 and b 5 29.

(b) Note that f 9(x) 5 3x2 1 2ax 1 b and f 0(x) 5 6x 1 2a.
We require f 9(4) 5 0 and f 0(1) 5 0, which give 
48 1 8a 1 b 5 0 and 6 1 2a 5 0. By the second 
equation, a 5 23, and so the first equation becomes 
48 2 24 1 b 5 0. Thus b 5 224. To verify that we
have a local minimum at x 5 4, and an inflection 
point at x 5 1, note that we now have f 0(x) 5 6x 2 6.
Since f 0 changes sign at x 5 1 and is positive at x 5 4,
the desired conditions are satisfied. So, use a 5 23 and
b 5 224.
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31. Refer to the illustration in the problem statement. Since

x2 1 y2 5 9, we have x 5 Ï9w 2w yw2w. Then the volume of

the cone is given by 

V 5 }
1
3

}pr2h 5 }
1
3

}px2(y 1 3)

5 }
1
3

}p(9 2 y2)(y 1 3)

5 }
p

3
}(2y3 2 3y2 1 9y 1 27),

for 23 , y , 3. 

Thus }
d
d
V
y
} 5 }

p

3
}(23y2 2 6y 1 9) 5 2p(y2 1 2y 2 3)

5 2p(y 1 3)(y 2 1), so the critical point in

the interval (23, 3) is y 5 1. Since }
d
d
V
y
} . 0 for 23 , y , 1

and }
d
d
V
y
} , 0 for 1 , y , 3, the critical point does 

correspond to the maximum value, which is V(1) 5 }
32

3
p
}

cubic units.

32. (a) Note that w2 1 d2 5 122, so d 5 Ï1w4w4w 2w ww2w. Then we

may write S 5 kwd2 5 kw(144 2 w2) 5 144kw 2 kw3

for 0 , w , 12,

so }
d
d
w
S
} 5 144k 2 3kw2 5 23k(w2 2 48). The critical

point (for 0 , w , 12) occurs at w 5 Ï4w8w 5 4Ï3w.

Since }
d
d
w
S
} . 0 for 0 , w , 4Ï3w and }

d
d
w
S
} , 0 for 

4Ï3w , w , 12, the critical point corresponds to the

maximum strength. The dimensions are 4Ï3w in. wide

by 4Ï6w in. deep.
(b)

[0, 12] by [2100, 800]

The graph of S 5 144w 2 w3 is shown. The maximum
strength shown in the graph occurs at w 5 4Ï3w < 6.9,
which agrees with the answer to part (a).

(c)

[0, 12] by [2100, 800]

The graph of S 5 d2Ï1w4w4w 2w dw2w is shown. The 
maximum strength shown in the graph occurs at 
d 5 4Ï6w < 9.8, which agrees with the answer to part
(a), and its value is the same as the maximum value
found in part (b), as expected.

Changing the value of k changes the maximum
strength, but not the dimensions of the strongest beam.
The graphs for different values of k look the same
except that the vertical scale is different.

33. (a) Note that w2 1 d2 5 122, so d 5 Ï1w4w4w 2w ww2w. Then we

may write S 5 kwd3 5 kw(144 2 w2)3/2, so 

}
d
d
w
S
} 5 kw ? }

3
2

}(144 2 w2)1/2(22w) 1 k(144 2 w2)3/2(1)

5 (kÏ1w4w4w 2w ww2w)(23w2 1 144 2 w2)

5 (24kÏ1w4w4w 2w ww2w)(w2 2 36)

The critical point (for 0 , w , 12) occurs at w 5 6.

Since }
d
d
w
S
} . 0 for 0 , w , 6 and }

d
d
w
S
} , 0 for 

6 , w , 12, the critical point corresponds to the 

maximum stiffness. The dimensions are 6 in. wide by

6Ï3w in. deep.

(b)

[0, 12] by [22000, 8000]

The graph of S 5 w(144 2 w2)3/2 is shown. The 
maximum stiffness shown in the graph occurs at w 5 6,
which agrees with the answer to part (a).

(c)

[0, 12] by [22000, 8000]

The graph of S 5 d3Ï1w4w4w 2w dw2w is shown. The 
maximum stiffness shown in the graph occurs at
d 5 6Ï3w < 10.4 agrees with the answer to part (a),
and its value is the same as the maximum value found
in part (b), as expected.

Changing the value of k changes the maximum 
stiffness, but not the dimensions of the stiffest beam.
The graphs for different values of k look the same
except that the vertical scale is different.

34. (a) v(t) 5 s9(t) 5 210p sin pt

The speed at time t is 10p)sin pt). The maximum speed

is 10p cm/sec and it occurs at t 5 }
1
2

}, t 5 }
3
2

}, t 5 }
5
2

}, and

t 5 }
7
2

} sec. The position at these times is s 5 0 cm (rest

position), and the acceleration 

a(t) 5 v9(t) 5 210p2 cos pt is 0 cm/sec2 at these

times.

(b) Since a(t) 5 210p2 cos pt, the greatest magnitude of
the acceleration occurs at t 5 0, t 5 1, t 5 2, t 5 3, and 
t 5 4. At these times, the position of the cart is either 
s 5 210 cm or s 5 10 cm, and the speed of the cart is 
0 cm/sec.
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35. Since }
d
d

i
t
} 5 22 sin t 1 2 cos t, the largest magnitude of the

current occurs when 22 sin t 1 2 cos t 5 0, or 

sin t 5 cos t. Squaring both sides gives sin2 t 5 cos2 t, and

we know that sin2 t 1 cos2 t 5 1, so sin2 t 5 cos2 t 5 }
1
2

}.

Thus the possible values of t are }
p

4
}, }

3
4
p
}, }

5
4
p
}, and so on.

Eliminating extraneous solutions, the solutions of 

sin t 5 cos t are t 5 }
p

4
} 1 kp for integers k, and at these

times )i) 5 )2 cos t 1 2 sin t) 5 2Ï2w. The peak current is 

2Ï2w amps.

36. The square of the distance is

D(x) 5 1x 2 }
3
2

}2
2

1 (Ïxw 1 0)2 5 x2 2 2x 1 }
9
4

},

so D9(x) 5 2x 2 2 and the critical point occurs at x 5 1.

Since D9(x) , 0 for x , 1 and D9(x) . 0 for x . 1, the

critical point corresponds to the minimum distance. The

minimum distance is ÏDw(1w)w 5 }
Ï

2
5w

}.

37. Calculus method:

The square of the distance from the point (1, Ï3w) to 

(x, Ï1w6w 2w xw2w) is given by

D(x) 5 (x 2 1)2 1 (Ï1w6w 2w xw2w 2 Ï3w)2

5 x2 2 2x 1 1 1 16 2 x2 2 2Ï4w8w 2w 3wx2w 1 3

5 22x 1 20 2 2Ï4w8w 2w 3wx2w. Then

D9(x) 5 22 2 }
2Ï4w8w

2

2w 3wx2w
}(26x) 5 22 1 }

Ï4w8w
6

2w
x

3wx2w
}.

Solving D9(x) 5 0, we have:

6x 5 2Ï4w8w 2w 3wx2w
36x2 5 4(48 2 3x2)

9x2 5 48 2 3x2

12x2 5 48

x 5 62

We discard x 5 22 as an extraneous solution, leaving 

x 5 2. Since D9(x) , 0 for 24 , x , 2 and D9(x) . 0 for

2 , x , 4, the critical point corresponds to the minimum

distance. The minimum distance is ÏDw(2w)w 5 2.

Geometry method:

The semicircle is centered at the origin and has radius 4.

The distance from the origin to (1, Ï3w) is 

Ï1w2w1w (wÏw3ww)2w 5 2. The shortest distance from the point to

the semicircle is the distance along the radius containing

the point (1, Ï3w). That distance is 4 2 2 5 2.

38. No. Since f (x) is a quadratic function and the coefficient of

x2 is positive, it has an absolute minimum at the point

where f 9(x) 5 2x 2 1 5 0, and that point is 1}
1
2

}, }
3
4

}2.
39. (a) Because f (x) is periodic with period 2p.

(b) No. Since f (x) is continuous on [0, 2p], its absolute
minimum occurs at a critical point or endpoint.
Find the critical points in [0, 2p]:

f 9(x) 5 24 sin x 2 2 sin 2x 5 0
24 sin x 2 4 sin x cos x 5 0

24(sin x)(1 1 cos x) 5 0
sin x 5 0 or cos x 5 21

x 5 0, p, 2p
The critical points (and endpoints) are (0, 8), (p, 0),
and (2p, 8). Thus, f (x) has an absolute minimum at 
(p, 0) and it is never negative.

40. (a) 2 sin t 5 sin 2t
2 sin t 5 2 sin t cos t

2(sin t)(1 2 cos t)5 0
sin t 5 0 or cos t 5 1

t 5 kp, where k is an integer
The masses pass each other whenever t is an integer
multiple of p seconds.

(b) The vertical distance between the objects is the
absolute value of f (x) 5 sin 2t 2 2 sin t.
Find the critical points in [0, 2p]:

f 9(x) 5 2 cos 2t 2 2 cos t 5 0

2(2 cos2 t 2 1) 2 2 cos t 5 0

2(2 cos2 t 2 cos t 2 1) 5 0

2(2 cos t 1 1)(cos t 2 1) 5 0

cos t 5 2}
1

2
} or cos t 5 1

t 5 }
2

3

p
}, }

4

3

p
}, 0, 2p

The critical points (and endpoints) are (0, 0),

1}
2
3
p
}, 2}

3Ï
2

3w
}2, 1}

4
3
p
}, }

3Ï
2

3w
}2, and (2p, 0)

The distance is greatest when t 5 }
2
3
p
} sec and when 

t 5 }
4
3
p
} sec. The distance at those times is }

3Ï
2

3w
} meters.

41. (a) sin t 5 sin (t 1 }
p

3
})

sin t 5 sin t cos }
p

3
} 1 cos t sin }

p

3
}

sin t 5 }
1
2

} sin t 1 }
Ï
2
3w

} cos t

}
1
2

} sin t 5 }
Ï
2
3w

} cos t

tan t 5 Ï3w

Solving for t, the particles meet at t 5 }
p

3
} sec and at 

t 5 }
4
3
p
} sec.
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(b) The distance between the particles is the absolute value

of f (t) 5 sin1t 1 }
p

3
}2 2 sin t 5 }

Ï
2

3w
} cos t 2 }

1
2

} sin t. Find

the critical points in [0, 2p]:

f 9(t) 5 2}
Ï

2
3w

} sin t 2 }
1
2

} cos t 5 0

2}
Ï
2

3w
} sin t 5 }

1
2

} cos t

tan t 5 2}
Ï
1

3w
}

The solutions are t 5 }
5
6
p
} and t 5 }

11
6
p
}, so the critical

points are at 1}
5
6
p
}, 212 and 1}

11
6
p
}, 12, and the interval

endpoints are at 10, }
Ï

2
3w

}2, and 12p, }
Ï

2
3w

}2. The particles

are farthest apart at t 5 }
5
6
p
} sec and at t 5 }

11
6
p
} sec, and

the maximum distance between the particles is 1 m.

(c) We need to maximize f 9(t), so we solve f 0(t) 5 0.

f 0(t) 5 2}
Ï

2
3w

} cos t 1 }
1
2

} sin t 5 0

}
1
2

} sin t 5 }
Ï

2
3w

} cos t

This is the same equation we solved in part (a), so the

solutions are t 5 }
p

3
} sec and t 5 }

4
3
p
} sec.

For the function y 5 f 9(t), the critical points occur at

1}
p

3
}, 212 and 1}

4
3
p
}, 12, and the interval endpoints are at

10, 2}
1
2

}2 and 12p, 2}
1
2

}2.
Thus, ) f 9(t)) is maximized at t 5 }

p

3
} and t 5 }

4
3
p
}. But

these are the instants when the particles pass each

other, so the graph of y 5 )f (t)) has corners at these

points and }
d
d
t
}) f (t)) is undefined at these instants. We

cannot say that the distance is changing the fastest at

any particular instant, but we can say that near t 5 }
p

3
} or

t 5 }
4
3
p
} the distance is changing faster than at any other

time in the interval.

42. The trapezoid has height (cos u) ft and the trapezoid bases

measure 1 ft and (1 1 2 sin u) ft, so the volume is given by

V(u) 5 }
1
2

}(cos u)(1 1 1 1 2 sin u)(20)

5 20(cos u)(1 1 sin u).

Find the critical points for 0 # u , }
p

2
}:

V9(u) 5 20(cos u)(cos u) 1 20(1 1 sin u)(2sin u)5 0

20 cos2 u 2 20 sin u 2 20 sin2 u 5 0

20(1 2 sin2 u) 2 20 sin u 2 20 sin2 u 5 0

220(2 sin2 u 1 sin u 2 1) 5 0

220(2 sin u 2 1)(sin u 1 1) 5 0

sin u 5 }
1
2

} or sin u 5 21

u 5 }
p

6
}

The critical point is at 1}
p

6
}, 15Ï3w2. Since V9(u) . 0 for 

0 # u , }
p

6
} and V9(u) , 0 for }

p

6
} , u , }

p

2
}, the critical point

corresponds to the maximum possible trough volume. The

volume is maximized when u 5 }
p

6
}.

43. (a)

Sketch segment RS as shown, and let y be the length of

segment QR. Note that PB 5 8.5 2 x, and so 

QB 5 Ïx2w 2w (w8w.5w 2w xw)2w 5 Ï8w.5w(2wxw2w 8w.5w)w.
Also note that triangles QRS and PQB are similar.

}
Q
RS

R
} 5 }

P
Q

Q
B
}

}
8
y
.5
} 5 }

Ï8w.5w(2w
x

xw2w 8w.5w)w
}

}
8
y
.5

2

2} 5 }
8.5(2x

x2

2 8.5)
}

y2 5 }
2x

8
2

.5x
8

2

.5
}

L2 5 x2 1 y2

L2 5 x2 1 }
2x

8
2

.5x
8

2

.5
}

L2 5

L2 5 }
2x

2
2

x3

8.5
}

x2(2x 2 8.5) 1 8.5x2
}}}

2x 2 8.5

D

R S

Q
y

y

x

x

L

C

A BP

8.5

Section 4.4 163



43. continued

(b) Note that x . 4.25, and let f (x) 5 L2 5 }
2x

2
2

x3

8.5
}. Since

y # 11, the approximate domain of f is 5.20 # x # 8.5.

Then

f 9(x) 5 5

For x . 5.20, the critical point occurs at 

x 5 }
5
8
1
} 5 6.375 in., and this corresponds to a minimum

value of f (x) because f 9(x) , 0 for 5.20 , x , 6.375

and f 9(x) . 0 for x . 6.375. Therefore, the value of x

that minimizes L2 is x 5 6.375 in.

(c) The minimum value of L is 

!}
2§(6§2

.3§(6
7§.
5
3§)

7§2

5§)3§8§.5
}§ < 11.04 in.

44. Since R 5 M21}
C
2

} 2 }
M
3

}2 5 }
C
2

}M2 2 }
1
3

}M3, we have 

}
d
d
M
R
} 5 CM 2 M2. Let f (M) 5 CM 2 M2. Then 

f 9(M) 5 C 2 2M, and the critical point for f occurs at

M 5 }
C
2

}.This value corresponds to a maximum because

f 9(M) . 0 for M , }
C
2

} and f 9(M) , 0 for M . }
C
2

}. The value

of M that maximizes }
d
d
M
R
} is M 5 }

C
2

}.

45. The profit is given by

P(x) 5 (n)(x 2 c) 5 a 1 b(100 2 x)(x 2 c)

5 2bx2 1 (100 1 c)bx 1 (a 2 100bc).

Then P9(x)5 22bx 1 (100 1 c)b

5 b(100 1 c 2 2x).

The critical point occurs at x 5 }
100

2
1 c
} 5 50 1 }

2
c

}, and this

value corresponds to the maximum profit because 

P9(x) . 0 for x , 50 1 }
2
c

} and P9(x) , 0 for x . 50 1 }
2
c

}. 

A selling price of 50 1 }
2
c

} will bring the maximum profit.

46.

Let P be the foot of the perpendicular from A to the mirror,

and Q be the foot of the perpendicular from B to the mirror.

Suppose the light strikes the mirror at point R on the way

from A to B. Let:

a 5 distance from A to P

b 5 distance from B to Q

c 5 distance from P to Q

x 5 distance from P to R

To minimize the time is to minimize the total distance the

light travels going from A to B. The total distance is

D(x) 5 Ïx2w 1w aw2w 1 Ï(cw 2w xw)2w 1w bw2w

Then 

D9(x) 5 }
2Ïx2w

1

1w aw2w
}(2x) 1}

2Ï(cw 2w
1

xw)2w 1w bw2w
}[22(c 2 x)]

5 }
Ïx2w

x

1w aw2w
} 2}

Ï(cw 2w
c 2

xw)2w
x

1w bw2w
}

Solving D9(x) 5 0 gives the equation

}
Ïx2w

x

1w aw2w
} 5 }

Ï(cw 2w
c 2

xw)2w
x

1w bw2w
}

which we will refer to as Equation 1. Squaring both sides,

we have:

}
x2 1

x2

a2} 5 }
(c 2

(c
x
2

)2
x
1

)2

b2}

x2[(c 2 x)2 1 b2] 5 (c 2 x)2(x2 1 a2)

x2(c 2 x)2 1 x2b2 5 (c 2 x)2x2 1 (c 2 x)2a2

x2b2 5 (c 2 x)2a2

x2b2 5 [c2 2 2xc 1 x2]a2

0 5 (a2 2 b2)x2 2 2a2cx 1 a2c2

0 5 [(a 1 b)x 2 ac][(a 2 b)x 2 ac]

x 5 }
a

a
1

c
b

} or x 5 }
a

a
2

c
b

}

Note that the value x 5 }
a

a
2

c
b

} is an extraneous solution

because x and c 2 x have opposite signs for this value. 

The only critical point occurs at x 5 }
a

a
1

c
b

}.

Normal

a
x

c

c – x

b
A

P R Q

B

u1 u2

x2(8x 2 51)
}}
(2x 2 8.5)2

(2x 2 8.5)(6x2) 2 (2x3)(2)
}}}

(2x 2 8.5)2
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To verify that this critical point represents the minimum
distance, note that

D0(x) 5 2

5 2

5 }
(x2 1

a2

a2)3/2} 1 ,

which is always positive.

We now know that D(x) is minimized when Equation 1 is

true, or, equivalently, }
P
A

R
R
} 5 }

Q
BR

R
}. This means that the two

right triangles APR and BQR are similar, which in turn

implies that the two angles must be equal.

47. }
d
d

v
x
} 5 ka 2 2kx

The critical point occurs at x 5 }
k
2
a
k
} 5 }

a
2

}, which represents a

maximum value 

because }
d
dx

2v
2} 5 22k, which is negative for all x. The

maximum value of v is 

kax 2 kx2 5 ka1}
a
2

}2 2 k1}
a
2

}2
2

5 }
k
4
a2
}.

48. (a) v 5 cr0r2 2 cr3

}
d
d
v
r
} 5 2cr0r 2 3cr2 5 cr(2r0 2 3r)

The critical point occurs at r 5 }
2

3

r0}. (Note that r 5 0 is

not in the domain of v.) The critical point represents a

maximum because }
d
dr

2v
2} 5 2cr0 2 6cr 5 2c(r0 2 3r),

which is negative in the domain }
r

2
0} # r # r0.

(b) We graph v 5 (0.5 2 r)r2, and observe that the 

maximum indeed occurs at v 5 1}
2
3

}20.5 5 }
1
3

}.

[0, 0.5] by [20.01, 0.03]

49. Revenue: r(x) 5 [200 2 2(x 2 50)]x 5 22x2 1 300x
Cost: c(x) 5 6000 1 32x
Profit: p(x) 5 r(x) 2 c(x) 

5 22x2 1 268x 2 6000, 50 # x # 80

Since p9(x) 5 24x 1 268 5 24(x 2 67), the critical point
occurs at x 5 67. This value represents the maximum
because p0(x) 5 24, which is negative for all x in the
domain. The maximum profit occurs if 67 people go on the
tour.

50. (a) Since A9(q) 5 2kmq22 1 }
h
2

}, the critical point occurs

when }
k
q
m
2} 5 }

h
2

}, or q 5 !}
2§k

h
m
}§. This corresponds to the 

minimum value of A(q) because A0(q) 5 2kmq23,

which is positive for q . 0.

(b) The new formula for average weekly cost is

B(q) 5 }
(k 1

q
bq)m
} 1 cm 1 }

h
2
q
}

5 }
k
q
m
} 1 bm 1 cm 1 }

h
2
q
}

5 A(q) 1 bm

Since B(q) differs from A(q) by a constant, the 

minimum value of B(q) will occur at the same q-value

as the minimum value of A(q). The most economical

quantity is again !}
2§k

h
m
}§.

51. The profit is given by
p(x) 5 r(x) 2 c(x)

5 6x 2 (x3 2 6x2 1 15x)
5 2x3 1 6x2 2 9x, for x $ 0.

Then p9(x) 5 23x2 1 12x 2 9 5 23(x 2 1)(x 2 3), so the
critical points occur at x 5 1 and x 5 3. Since p9(x) , 0 for
0 # x , 1, p9(x) . 0 for 1 , x , 3, and p9(x) , 0 for 
x . 3, the relative maxima occur at the endpoint x 5 0 and
at the critical point x 5 3. Since p(0) 5 p(3) 5 0, this
means that for x $ 0, the function p(x) has its absolute
maximum value at the points (0, 0) and (3, 0). This result
can also be obtained graphically, as shown.

[0, 5] by [28, 2]

52. The average cost is given by 

a(x) 5 }
c(

x
x)
} 5 x2 2 20x 1 20,000. Therefore,

a9(x) 5 2x 2 20 and the critical value is x 5 10, which 

represents the minimum because a0(x) 5 2, which is 

positive for all x. The average cost is minimized at a 

production level of 10 items.

b2
}}
[(c 2 x)2 1 b2]3/2

2[(c 2 x)2 1 b2] 1 (c 2 x)2
}}}

[(c 2 x)2 1 b2]3/2
(x2 1 a2) 2 x2
}}

(x2 1 a2)3/2

(Ï(cw 2w xw)2w 1w bw2w)(21) 2 (c 2 x)1}Ï(cw
2

2w
(c

xw
2

)2w
x

1w
)

bw2w
}2

}}}}}}
(c 2 x)2 1 b2

(Ïx2w 1w aw2w)(1) 2 (x)(}Ïx2w
x

1w aw2w
})

}}}}
x2 1 a2
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53. (a) According to the graph, y9(0) 5 0.

(b) According to the graph, y9(2L) 5 0.

(c) y(0) 5 0, so d 5 0.

Now y9(x) 5 3ax2 1 2bx 1 c, so y9(0) implies that 

c 5 0. Therefore, y(x) 5 ax3 1 bx2 and 

y9(x) 5 3ax2 1 2bx. Then y(2L) 5 2aL3 1 bL2 5 H

and y9(2L) 5 3aL2 2 2bL 5 0, so we have two linear

equations in the two unknowns a and b. The second

equation gives b 5 }
3a

2
L

}. Substituting into the first 

equation, we have 2aL3 1 }
3a

2
L3
} 5 H, or }

a
2
L3
} 5 H, so 

a 5 2}
L
H

3}. Therefore, b 5 3}
L
H

2} and the equation for y is

y(x) 5 2}
L
H

3}x3 1 3}
L
H

2}x2, or y(x) 5 H321}
L
x

}2
3

1 31}
L
x

}2
2

4.

54. (a) The base radius of the cone is r 5 }
2p

2
a
p

2 x
} and so the

height is h 5 Ïaw2w2w rw2w 5 !a§2§2§ 1§}
2§p§2

a
p§2§ x
}§2

2

§. 

Therefore,

V(x) 5 }
p

3
}r2h 5 }

p

3
}1}2p

2
a
p

2 x
}2

2

!a§2§2§ 1§}
2§p§2

a
p§2§ x
}§2

2

§.

(b) To simplify the calculations, we shall consider the 
volume as a function of r:

volume 5 f(r) 5 }
p

3
}r2Ïaw2w2w rw2w, where 0 , r , a.

f 9(r) 5 }
p

3
} }

d
d
r
}(r2Ïaw2w2w rw2w)

= }
p

3
}3r2 ? }

2Ïaw
1
2w2w rw2w
} ? (22r) 1 (Ïaw2w2w rw2w)(2r)4

5 }
p

3
}3}2r3

Ï
1

aw
2
2

r

w
(

2w
a2

rw
2

2w
r2)

}4
5 }

p

3
}3}2Ï

a2

aw
r
2

2

w2w
3

rw
r
2w

3
}4

5 }
p

3

r(

Ï
2a

aw

2

2w
2

2w
3

rw
r
2w

2)
}

The critical point occurs when r2 5 }
2
3
a2
}, which gives 

r 5 a!}
2
3

}§ 5 }
aÏ

3
6w

}. Then 

h 5 Ïaw2w2w rw2w 5 !a§2§2§ }
2§3
a§

2
}§ 5 !}

a
3§
2
}§ 5 }

aÏ
3

3w
}. Using

r 5 }
aÏ

3
6w

} and h 5 }
aÏ

3
3w

},

we may now find the values of r and h for the given
values of a.

When a 5 4: r 5 }
4Ï

3
6w

}, h 5 }
4Ï

3
3w

};

when a 5 5: r 5 }
5Ï

3
6w

}, h 5 }
5Ï

3
3w

};

when a 5 6: r 5 2Ï6w, h 5 2Ï3w;

when a 5 8: r 5 }
8Ï

3
6w

}, h 5 }
8Ï

3
3w

}

(c) Since r 5 }
aÏ

3
6w

} and h 5 }
aÏ

3
3w

}, the relationship is 

}
h
r

} 5 Ï2w.

55. (a) Let x0 represent the fixed value of x at point P, so that

P has coordinates (x0, a),

and let m 5 f 9(x0) be the slope of line RT. Then the

equation of line RT is 

y 5 m(x 2 x0) 1 a. The y-intercept of this line is

m(0 2 x0) 1 a 5 a 2 mx0,

and the x-intercept is the solution of 

m(x 2 x0) 1 a 5 0, or x 5 }
mx0

m

2 a
}. 

Let O designate the origin. Then 

(Area of triangle RST)

5 2(Area of triangle ORT)

5 2 ? }
1
2

}(x-intercept of line RT)(y-intercept of line RT)

5 2 ? }
1
2

}1}mx0

m

2 a
}2(a 2 mx0)

5 2m1}mx0

m

2 a
}21}mx0

m

2 a
}2

5 2m1}mx0

m

2 a
}2

2

5 2m1x0 2 }
m
a

}2
2

Substituting x for x0, f 9(x) for m, and f (x) for a, we

have A(x) 5 2f 9(x)3x 2 }
f
f
9

(
(
x
x
)
)

}4
2
.

(b) The domain is the open interval (0, 10). 

To graph, let y1 5 f (x) 5 5 1 5!1§ 2§ }
1§x

0

2

§0
}§,

y2 5 f 9(x) 5 NDER(y1), and 

y3 5 A(x) 5 2y21x 2 }
y

y
1

2

}2
2
.

The graph of the area function y3 5 A(x) is shown

below.

[0, 10] by [2100, 1000]

The vertical asymptotes at x 5 0 and x 5 10
correspond to 
horizontal or vertical tangent lines, which do not form
triangles.
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(c) Using our expression for the y-intercept of the tangent line, the height of the triangle is

a 2 mx 5 f (x) 2 f 9(x) ? x

5 5 1 }
1
2

}Ï1w0w0w 2w xw2w 2 }
2Ï1w

2

0w0w
x

2w xw2w
}x

5 5 1 }
1
2

}Ï1w0w0w 2w xw2w 1 }
2Ï1w0w

x

0w

2

2w xw2w
}

We may use graphing methods or the analytic method in part (d) to find that the minimum value of A(x) occurs at x < 8.66.
Substituting this value into the expression above, the height of the triangle is 15. This is 3 times the y-coordinate of the
center of the ellipse.

(d) Part (a) remains unchanged. The domain is (0, C). To graph, note that 

f (x) 5 B 1 B!1§ 2§ }
C
x§

2

2}§ 5 B 1 }
C
B

}ÏCw2w2w xw2w and

f 9(x) 5 }
C
B

} }
2ÏCw

1
2w2w xw2w
}(22x) 5 }

CÏ
2

Cw
B
2w

x

2w xw2w
}.

Therefore, we have

A(x) 5 2f 9(x)3x 2 }
f
f
9

(
(
x
x
)
)

}4
2

5 }
CÏCw

B
2

x

w2w xw2w
}3x 2 4

2

5 }
CÏCw

B
2

x

w2w xw2w
}3x 2 42

5 }
BCxÏCw

1
2w2w xw2w
}[Bx2 1 (BC 1 BÏCw2w2w xw2w)(ÏCw2w2w xw2w)]2

5 }
BCxÏCw

1
2w2w xw2w
}[Bx2 1 BCÏCw2w2w xw2w 1 B(C2 2 x2)]2

5 }
BCxÏCw

1
2w2w xw2w
}[BC(C 1 ÏCw2w2w xw2w)]2

5

A9(x) 5 BC ?

5 322x2 2 (C 1 ÏCw2w2w xw2w)(}ÏCw
2

2w
x

2w

2

xw2w
} 1 ÏCw2w2w xw2w)4

5 [22x2 1 }
ÏCw

C
2

x

w2w

2

xw2w
} 2 CÏCw2w2w xw2w 1 x2 2 (C2 2 x2)]

5 (}ÏCw
C
2

x

w2w

2

xw2w
} 2 CÏCw2w2w xw2w 2 C2)

5 [Cx2 2 C(C2 2 x2) 2 C2ÏCw2w2w xw2w]

5 (2x2 2 C2 2 CÏCw2w2w xw2w)BC2(C 1 ÏCw2w2w xw2w)
}}}

x2(C2 2 x2)3/2

BC(C 1 ÏCw2w2w xw2w)
}}}

x2(C2 2 x2)3/2

BC(C 1 ÏCw2w2w xw2w)
}}}

x2(C2 2 x2)

BC(C 1 ÏCw2w2w xw2w)
}}}

x2(C2 2 x2)

BC(C 1 ÏCw2w2w xw2w)
}}}

x2(C2 2 x2)

(xÏCw2w2w xw2w)(2)(C 1 ÏCw2w2w xw2w)1}ÏCw
2

2w
x

2w xw2w
}2 2 (C 1 ÏCw2w2w xw2w)21x}ÏCw

2

2w
x

2w xw2w
} 1 ÏCw2w2w xw2w(1)2

}}}}}}}}}}
x2(C2 2 x2)

BC(C 1 ÏCw2w2w xw2w)2
}}}

xÏCw2w2w xw2w

(BC 1 BÏCw2w2w xw2w)ÏCw2w2w xw2w
}}}}

2Bx

B 1 }
C
B

}ÏCw2w2w xw2w
}}

}
CÏ

2

Cw
B
2w

x

2w xw2w
}
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55. continued

To find the critical points for 0 , x , C, we solve:

2x2 2 C2 5 CÏCw2w2w xw2w

4x4 2 4C2x2 1 C4 5 C4 2 C2x2

4x4 2 3C2x2 5 0

x2(4x2 2 3C2) 5 0

The minimum value of A(x) for 0 , x , C occurs at the critical point x 5 }
CÏ

2
3w

}, or x2 5 }
3C

4

2
}. The 

corresponding triangle height is

a 2 mx 5 f (x) 2 f 9(x) ? x

5 B 1 }
C
B

}ÏCw2w2w xw2w 1 }
CÏCw

Bx
2w

2

2w xw2w
}

5 B 1 }
C
B

}!C§2§2§ }
3§C

4§
2

}§ 1

5 B 1 }
C
B

}1}
C
2

}2 1

5 B 1 }
B
2

} 1 }
3
2
B
}

5 3B

This shows that the triangle has minimum area when its height is 3B.

■ Section 4.5 Linearization and Newton’s Method (pp. 220–232)

Exploration 1 Approximating with Tangent Lines
1. f 9(x) 5 2x, f 9(1) 5 2, so an equation of the tangent line is y 2 1 5 2(x 2 1) or y 5 2x 2 1.

3. Since (y1 2 y2)(1) 5 y1(1) 2 y2(1) 5 1 2 1 5 0, this view shifts the action from the point (1, 1) to the point (1, 0). Also 
(y1 2 y2)9(1) 5 y19(1) 2 y29(1) 5 2 2 2 5 0. Thus the tangent line to y1 2 y2 at x 5 1 is horizontal (the x-axis). The measure of
how well y2 fits y1 at (1, 1) is the same as the measure of how well the x-axis fits y1 2 y2 at (1, 0).

4. These tables show that the values of y1 2 y2 near x 5 1 are close to 0 so that y2 is a good approximation to y1 near 
x 5 1. Here are two tables with D Table 5 0.0001.

}
3B

4
C2

}

}

}
C
2

2
}

B1}
3C

4

2

}2
}}

C!C§2§2§ }
3§C

4§
2

}§
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Exploration 2 Using Newton’s Method on the
Grapher

1–3. Here are the first 11 computations.

4. Answers will vary. Here is what happens for x1 5 22.

Quick Review 4.5

1. }
d
d

y
x
} 5 cos (x2 1 1) ? }

d
d
x
}(x2 1 1) 5 2x cos (x2 1 1)

2. }
d
d

y
x
} 5

5

5

3.

[22, 6] by [23, 3]

x < 20.567

4.

[24, 4] by [210, 10]

x < 20.322

5. f 9(x) 5 (x)(2e2x) 1 (e2x)(1) 5 e2x 2 xe2x

f 9(0) 5 1
The lines passes through (0, 1) and has slope 1. Its equation
is y 5 x 1 1.

6. f 9(x) 5 (x)(2e2x) 1 (2e2x)(1) 5 e2x 2 xe2x

f 9(21) 5 e1 2 (2e1) 5 2e
The lines passes through (21, 2e 1 1) and has slope 2e.
Its equation is y 5 2e(x 1 1) 1 (2e 1 1), or
y 5 2ex 1 e 1 1.

7. (a) x 1 1 5 0
x 5 21

(b) 2ex 1 e 1 1 5 0
2ex 5 2(e 1 1)
x 5 2}

e
2
1

e
1

} < 20.684

8. f 9(x) 5 3x2 2 4
f 9(1) 5 3(1)2 2 4 5 21
Since f (1) 5 22 and f 9(1) 5 21, the graph of g(x) passes
through (1, 22) and has slope 21. Its equation is 
g(x) 5 21(x 2 1) 1 (22), or g(x) 5 2x 2 1.

9. f 9(x) 5 cos x
f 9(1.5) 5 cos 1.5
Since f (1.5) 5 sin 1.5 and f 9(1.5) 5 cos 1.5, the tangent
line passes through (1.5, sin 1.5) and has slope cos 1.5. Its
equation is y 5 (cos 1.5)(x 2 1.5) 1 sin 1.5, or 
approximately y 5 0.071x 1 0.891

[0, p] by [20.2, 1.3]

10. For x . 3, f 9(x) 5 }
2Ïx

1

w2w 3w
}, and so f 9(4) 5 }

1
2

}. Since

f (4) 5 1 and f 9(4) 5 }
1
2

}, the tangent line passes through 

(4, 1) and has slope }
1
2

}. Its equation is y 5 }
1
2

}(x 2 4) 1 1, or

y 5 }
1
2

}x 2 1.

[21, 7] by [22, 2]

Section 4.5 Exercises
1. (a) f 9(x) 5 3x2 2 2

We have f (2) 5 7 and f 9(2) 5 10.
L(x) 5 f (2) 1 f 9(2)(x 2 2)

5 7 1 10(x 2 2)
5 10x 2 13

(b) Since f (2.1) 5 8.061 and L(2.1) 5 8, the 
approximation differs from the true value in absolute
value by less than 1021.

1 2 cos x 2 (x 1 1) sin x
}}}

(x 1 1)2

x 2 x sin x 1 1 2 sin x 2 x 2 cos x
}}}}

(x 1 1)2

(x 1 1)(1 2 sin x) 2 (x 1 cos x)(1)
}}}}

(x 1 1)2
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x f (x) g(x)

0.7 21.457 21.7

0.8 21.688 21.8

0.9 21.871 21.9

1.0 22 22

1.1 22.069 22.1

1.2 22.072 22.2

1.3 22.003 22.3



2. (a) f 9(x) 5 }
2Ïx

1
2w 1w 9w
}(2x) 5 }

Ïx2w
x

1w 9w
}

We have f (24) 5 5 and f 9(24) 5 2}
4
5

}.

L(x) 5 f (24) 1 f 9(24)(x 2 (24))

5 5 2 }
4
5

}(x 1 4)

5 2}
4
5

}x 1 }
9
5

}

(b) Since f (23.9) < 4.9204 and L(23.9) 5 4.92, the
approximation differs from the true value by less than
1023.

3. (a) f 9(x) 5 1 2 x22

We have f (1) 5 2 and f 9(1) 5 0.
L(x) 5 f (1) 1 f 9(1)(x 2 1)

5 2 1 0(x 2 1)
5 2

(b) Since f (1.1) < 2.009 and L(1.1) 5 2, the 
approximation differs from the true value by less than
1022.

4. (a) f 9(x) 5 }
x 1

1
1

}

We have f (0) 5 0 and f 9(0) 5 1.
L(x) 5 f (0) 1 f 9(0)(x 2 0)

5 0 1 1x
5 x

(b) Since f (0.1) < 0.0953 and L(0.1) 5 0.1 the 
approximation differs from the true value by less than
1022.

5. (a) f 9(x) 5 sec2 x
We have f (p) 5 0 and f 9(p) 5 1.
L(x) 5 f (p) 1 f 9(p)(x 2 p)

5 0 1 1(x 2 p)
5 x 2 p

(b) Since f (p 1 0.1) < 0.10033 and L(p 1 0.1) 5 0.1, the
approximation differs from the true value in absolute
value by less than 1023.

6. (a) f 9(x) 5 2}
Ï1w

1

2w xw2w
}

We have f (0) 5 }
p

2
} and f 9(0) 5 21.

L(x) 5 f (0) 1 f 9(0)(x 2 0)

5 }
p

2
} 1 (21)(x 2 0)

5 2x 1 }
p

2
}

(b) Since f (0.1) < 1.47063 and L(0.1) < 1.47080, the
approximation differs from the true value in absolute
value by less than 1023.

7. f 9(x) 5 k(1 1 x)k21

We have f (0) 5 1 and f 9(0) 5 k.
L(x) 5 f (0) 1 f 9(0)(x 2 0)

5 1 1 k(x 2 0)
5 1 1 kx

8. (a) f (x) 5 (1 2 x)6 5 [1 1 (2x)]6 < 1 1 6(2x) 5 1 2 6x

(b) f (x) 5 }
1 2

2
x

} 5 2[1 1 (2x)]21 < 2[1 1 (21)(2x)]

5 2 1 2x

(c) f (x) 5 (1 1 x)21/2 < 1 1 12}
1
2

}2x 5 1 2 }
2
x

}

(d) f (x) 5 Ï2w 1w xw2w 5 Ï2w11 1 }
x
2

2
}2

1/2

< Ï2w11 1 }
1
2

} }
x
2

2
}2 5 Ï2w11 1 }

x
4

2
}2

(e) f (x) 5 (4 1 3x)1/3 5 41/311 1 }
3
4
x
}2

1/3

< 41/311 1 }
1
3

} }
3
4
x
}2 5 41/311 1 }

4
x

}2

(f) f (x) 5 11 2 }
2 1

1
x

}2
2/3

5 31 1 12}
2 1

1
x

}24
2/3

< 1 1 }
2
3

}12}
2 1

1
x

}2 5 1 2 }
6 1

2
3x

}

9. f 9(x) 5 }
2Ïx

1

w1w 1w
} 1 cos x

We have f (0) 5 1 and f 9(0) 5 }
3
2

}

L(x) 5 f (0) 1 f 9(0)(x 2 0)

5 1 1 }
3
2

}x

The linearization is the sum of the two individual

linearizations, which are x for sin x and 1 1 }
1
2

}x

for Ïxw1w 1w.

10. (a) (1.002)100 5 (1 1 0.002)100 < 1 1 (100)(0.002)
5 1.2; 
)1.002100 2 1.2) < 0.021 , 1021

(b) Ï
3

1w.0w0w9w 5 (1 1 0.009)1/3 < 1 1 }
1
3

}(0.009) 5 1.003;

)Ï
3

1w.0w0w9w 2 1.003) < 9 3 1026 , 1025

11. Center 5 21
f 9(x) 5 4x 1 4
We have f (21) 5 25 and f 9(21) 5 0
L(x) 5 f (21) 1 f 9(21)(x 2 (21)) 5 25 1 0(x 1 1) 5 25

12. Center 5 8

f 9(x) 5 }
1
3

}x22/3

We have f (8) 5 2 and f 9(8) 5 }
1
1
2
}.

L(x) 5 f (8) 1 f 9(8)(x 2 8) 5 2 1 }
1
1
2
}(x 2 8) 5 }

1
x
2
} 1 }

4
3

}
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13. Center 5 1

f 9(x) 5}
(x 1 1

(x
)(

1

1)
1
2

)2
(x)(1)

}5 }
(x 1

1
1)2}

We have f (1) 5 }
1
2

} and f 9(1) 5 }
1
4

}

L(x) 5 f (1) 1 f 9(1)(x 2 1) 5 }
1
2

} 1 }
1
4

}(x 2 1) 5 }
1
4

}x 1 }
1
4

}

Alternate solution:

Using center 5 }
3
2

}, we have f 1}
3
2

}2 5 }
3
5

} and f 91}
3
2

}2 5 }
2
4
5
}.

L(x) 5 f 1}
3
2

}2 1 f 91}
3
2

}21x 2 }
3
2

}2 5 }
3
5

} 1 }
2
4
5
}1x 2 }

3
2

}2 5 }
2
4
5
}x 1}

2
9
5
}

14. Center 5 }
p

2
}

f 9(x) 5 2sin x

We have f 1}
p

2
}2 5 0 and f 91}

p

2
}2 5 21.

L(x) 5 f 1}
p

2
}2 1 f 91}

p

2
}21x 2 }

p

2
}2 5 0 2 11x 2 }

p

2
}2 5 2x 1 }

p

2
}

15. Let f (x) 5 x3 1 x 2 1. Then f 9(x) 5 3x2 1 1 and 

xn11 5 xn 2 }
f

f

9

(

(

x

x
n

n

)

)
} 5 xn 2 }

xn
3

3x

1

n
2

x

1
n 2

1

1
}.

Note that f is cubic and f 9 is always positive, so there is
exactly one solution. We choose x1 5 0.

x1 5 0
x2 5 1
x3 5 0.75
x4 < 0.6860465
x5 < 0.6823396
x6 < 0.6823278
x7 < 0.6823278

Solution: x < 0.682328

16. Let f (x) 5 x4 1 x 2 3. Then f 9(x) 5 4x3 1 1 and 

xn11 5 xn 2 }
f

f

9

(

(

x

x
n

n

)

)
} 5 xn 2 }

xn

4

4

x

1

n
3

x

1
n 2

1

3
}

The graph of y 5 f (x) shows that f (x) 5 0 has two

solutions.

[23, 3] by [24, 4]

x1 5 21.5 x1 5 1.2
x2 5 21.455 x2 < 1.6541962
x3 < 21.4526332 x3 < 1.1640373
x4 < 21.4526269 x4 < 1.1640351
x5 < 21.4526269 x5 < 1.1640351

Solutions: x < 21.452627, 1.164035

17. Let f (x) 5 x2 2 2x 1 1 2 sin x. 

Then f 9(x) 5 2x 2 2 2 cos x and 

xn11 5 xn 2 }
f

f

9

(

(

x

x
n

n

)

)
} 5 xn 2

The graph of y 5 f (x) shows that f (x) 5 0 has two

solutions

[24, 4] by [23, 3]

x1 5 0.3 x1 5 2
x2 < 0.3825699 x2 < 1.9624598
x3 < 0.3862295 x3 < 1.9615695
x4 < 0.3862369 x4 < 1.9615690
x5 < 0.3862369 x5 < 1.9615690

Solutions: x < 0.386237, 1.961569

18. Let f (x) 5 x4 2 2. Then f 9(x) 5 4x3 and 

xn11 5 xn 2 }
f

f

9

(

(

x

x
n

n

)

)
} 5 xn 2 }

xn

4

4

x

2

n
3

2
}.

Note that f (x) 5 0 clearly has two solutions, namely 

x 5 6Ï
4

2w. We use Newton’s method to find the decimal

equivalents.

x1 5 1.5

x2 < 1.2731481

x3 < 1.1971498

x4 < 1.1892858

x5 < 1.1892071

x6 < 1.1892071

Solutions: x < 61.189207

19. (a) Since }
d
d
y
x
} 5 3x2 2 3, dy 5 (3x2 2 3) dx.

(b) At the given values,
dy 5 (3 ? 22 2 3)(0.05) 5 9(0.05) 5 0.45.

20. (a) Since }
d
d
y
x
} 5 5 }

(
2
1

2

1

2
x
x
2)

2

2},

dy 5 }
(
2
1

2

1

2
x
x
2)

2

2} dx.

(b) At the given values,

dy 5 }
[
2
1

2

1

2
(2
(2

2
2
)2
)
]

2

2}(0.1) 5 }
2

5
2

2
8

}(0.1)

5 20.024.

21. (a) Since }
d
d
y
x
} 5 (x2)1}

1
x

}2 1 (ln x)(2x) 5 2x ln x 1 x,

dy 5 (2x ln x 1 x) dx.

(b) At the given values,

dy 5 [2(1) ln (1) 1 1](0.01) 5 1(0.01) 5 0.01

(1 1 x2)(2) 2 (2x)(2x)
}}}

(1 1 x2)2

xn
2 2 2xn 1 1 2 sin xn}}}
2xn 2 2 2 cos xn
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22. (a) Since }
d
d

y
x
} 5 (x)1}

2Ï1w
1

2w xw2w
}2(22x) 1(Ï1w 2w xw2w)(1)

5 }
Ï1w

2

2w
x2

xw2w
} 1 Ï1w 2w xw2w 5 }

2x2

Ï
1

1w
(

2w
1 2

xw2w
x2)

} 5 }
Ï
1

1w
2

2w
2x

xw

2

2w
},

dy 5 }
Ï
1

1w
2

2w
2x

xw

2

2w
} dx.

(b) At the given values, dy 5 }
Ï
1

1w
2

2w
2(

(w
0

0w
)

)

2

2w
}(20.2) 5 20.2.

23. (a) Since }
d
d

y
x
} 5 esin x cos x, dy 5 (cos x)esin x dx.

(b) At the given values,

dy 5 (cos p)(esin p)(20.1) 5 (21)(1)(20.1) 5 0.1.

24. (a) Since }
d
d

y
x
} 5 23 csc 11 2 }

3
x

}2 cot 11 2 }
3
x

}212}
1
3

}2
5 csc 11 2 }

3
x

}2 cot 11 2 }
3
x

}2,
dy 5 csc 11 2 }

3
x

}2 cot 11 2 }
3
x

}2 dx.

(b) At the given values,

dy 5 csc 11 2 }
1
3

}2 cot 11 2 }
1
3

}2(0.1)

5 0.1 csc }
2
3

} cot }
2
3

} < 0.205525

25. (a) y 1 xy 2 x 5 0

y(1 1 x) 5 x

y 5 }
x 1

x
1

}

Since }
d
d

y
x
} 5}

(x 1 1
(x
)(

1

1)
1
2

)2
(x)(1)

}5 }
(x 1

1
1)2},

dy 5 }
(x 1

dx
1)2}.

(b) At the given values,

dy 5 }
(0

0
1

.01
1)2} 5 0.01.

26. (a) Since }
d
d

y
x
} 5 sec (x2 2 1) tan (x2 2 1) ? (2x),

dy 5 2x sec (x2 2 1) tan (x2 21 ) dx.

(b) At the given values,

dy 5 2(1.5) sec (1.52 2 1) tan (1.52 2 1) ? (0.05)

5 0.15 sec 1.25 tan 1.25 < 1.431663.

27. (a) Df 5 f (0.1) 2 f (0) 5 0.21 2 0 5 0.21

(b) Since f 9(x) 5 2x 1 2, f 9(0) 5 2.
Therefore, df 5 2 dx 5 2(0.1) 5 0.2.

(c) )Df 2 df ) 5)0.21 2 0.2) 5 0.01

28. (a) Df 5 f (1.1) 2 f (1) 5 0.231 2 0 5 0.231

(b) Since f 9(x) 5 3x2 2 1, f 9(1) 5 2.
Therefore, df 5 2dx 5 2(0.1) 5 0.2.

(c) )Df 2 df ) 5 )0.231 2 0.2) 5 0.031

29. (a) Df 5 f (0.55) 2 f (0.5) 5 }
2
1
0
1
} 2 2 5 2}

1
2
1
}

(b) Since f 9(x) 5 2x22, f 9(0.5) 5 24.

Therefore, df 5 24 dx 5 24(0.05) 5 20.2 5 2}
1
5

}

(c) )Df 2 df ) 5 )2}
1
2
1
} 1 }

1
5

}) 5 }
5
1
5
}

30. (a) Df 5 f (1.01) 2 f (1) 5 1.04060401 2 1 5 0.04060401

(b) Since f 9(x) 5 4x3, f 9(1) 5 4.
Therefore, df 5 4 dx 5 4(0.01) 5 0.04.

(c) )Df 2 df ) 5 )0.04060401 2 0.04) 5 0.00060401

31. Note that }
d
d
V
r
} 5 4pr2, dV 5 4pr2 dr. When r changes from

a to a 1 dr, the change in volume is approximately 

4pa2 dr.

32. Note that }
d
d
S
r
} 5 8pr, so dS 5 8pr dr. When r changes from

a to a 1 dr, the change in surface area is approximately

8pa dr.

33. Note that }
d
d
V
x
} 5 3x2, so dV 5 3x2 dx. When x changes from

a to a 1 dx, the change in volume is approximately 3a2 dx.

34. Note that }
d
d
S
x
} 5 12x, so dS 5 12x dx. When x changes from

a to a 1 dx, the change in surface area is approximately

12a dx.

35. Note that }
d
d
V
r
} 5 2prh, so dV 5 2prh dr. When r changes

from a to a 1 dr, the change in volume is approximately

2pah dr.

36. Note that }
d
d
S
h
} 5 2pr, so dS 5 2pr dh. When h changes from

a to a 1 dh, the change in lateral surface area is

approximately 2pr dh.

37. (a) Note that f 9(0) 5 cos 0 5 1.
L(x) 5 f (0) 1 f 9(0)(x 2 0) 5 1 1 1x 5 x 1 1

(b) f (0.1) < L(0.1) 5 1.1

(c) The actual value is less than 1.1. This is because the
derivative is decreasing over the interval [0, 0.1], which
means that the graph of f (x) is concave down and lies
below its linearization in this interval.
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38. (a) Note that A 5 pr2 and }
d
d
A
r
} 5 2pr, so dA 5 2pr dr.

When r changes from a to a 1 dr, the change in area is

approximately 2pa dr. Substituting 2 for a and 0.02 for

dr, the change in area is approximately 

2p(2)(0.02) 5 0.08p < 0.2513

(b) }
d
A
A
} 5 }

0.
4
0
p

8p
} 5 0.02 5 2%

39. Let A 5 cross section area, C 5 circumference, and 

D 5 diameter. Then D 5 }
C
p

}, so }
d
d
D
C
} 5 }

p

1
} and dD 5 }

p

1
} dC.

Also, A 5 p1}
D
2

}2
2

5 p1}
2
C
p
}2

2
5 }

4
C
p

2
}, so }

d
d
C
A
} 5 }

2
C
p
} and 

dA 5 }
2
C
p
} dC. When C increases from 10p in. to 

10p 1 2 in. the diameter increases by 

dD 5 }
p

1
}(2) 5 }

p

2
} < 0.6366 in. and the area increases by

approximately dA 5 }
1
2
0
p

p
}(2) 5 10 in2.

40. Let x 5 edge length and V 5 volume. Then V 5 x3, and so

dV 5 3x2 dx. With x 5 10 cm and dx 5 0.01x 5 0.1 cm, we

have V 5 103 5 1000 cm3 and dV 5 3(10)2(0.1) 5 30 cm3,

so the percentage error in the volume measurement is

approximately }
d
V
V
} 5 }

1
3
0

0
00
} 5 0.03 5 3%.

41. Let x 5 side length and A 5 area. Then A 5 x2 and 

}
d
d
A
x
} 5 2x, so dA 5 2x dx. We want )dA) # 0.02A, which

gives )2x dx) # 0.02x2, or )dx) # 0.01x. The side length

should be measured with an error of no more than 1%.

42. The volume of a cylinder is V 5 pr2h. When h is held

fixed, we have }
d
d
V
r
} 5 2prh, and so dV 5 2prh dr.

For h 5 30 in., r 5 6 in., and dr 5 0.5 in., the thickness of

the shell is approximately 

dV 5 2prh dr 5 2p(6)(30)(0.5) 5 180p < 565.5 in3.

43. Let u 5 angle of elevation and h 5 height of building. Then

h 5 30 tan u, so }
d
d
h
u
} 5 30 sec2 u and dh 5 30 sec2 u du. We

want )dh) , 0.04h, which gives:

)30 sec2 u du) , 0.04 (30 tan u)

}
cos

1
2 u
})du) , }

0.0
c
4
os

si
u

n u
}

)du) , 0.04 sin u cos u

For u 5 758 5 }
5
1
p

2
} radians, we have 

)du) , 0.04 sin }
5
1
p

2
} cos }

5
1
p

2
} 5 0.01 radian. The angle should

be measured with an error of less than 0.01 radian (or

approximately 0.57 degrees), which is a percentage error of

approximately 0.76%.

44. Note that }
d
d
V
h
} 5 3ph2, so dV 5 3ph2 dh. We want 

)dV) # 0.01V, which gives )3ph2 dh) # 0.01(ph3), or

)dh) # }
0.0

3
1h
}. The height should be measured with an error

of no more than }
1
3

}%.

45. (a) Note that V 5 pr2h 5 10pr2 5 2.5pD2, where D is the

interior diameter of the tank. Then }
d
d
D
V
} 5 5pD, so 

dV 5 5pD dD. We want )dV) # 0.01V, which gives

)5pD dD) # 0.01(2.5pD2), or )dD) # 0.005D. The

interior diameter should be measured with an error of

no more than 0.5%.

(b) Now we let D represent the exterior diameter of the

tank, and we assume that the paint coverage rate

(number of square feet covered per gallon of paint) is

known precisely. Then, to determine the amount of

paint within 5%, we need to calculate the lateral

surface area S with an error of no more than 5%. Note

that S 5 2prh 5 10pD, so }
d
d
D
S
} 5 10p and 

dS 5 10p dD. We want )dS) # 0.05S, which gives 

)10p dD) # 0.05(10pD), or dD # 0.05D. The exterior

diameter should be measured with an error of no more

than 5%.

Section 4.5 173



46. Since V 5 pr2h, we have }
d
d
V
r
} 5 2prh, and dV 5 2prh dr.

We want )dV) # 0.001V, which gives 

)2prh dr) # 0.001 pr2h, or )dr) # 0.0005r. The variation of

the radius should not exceed }
20

1
00
} of the ideal radius, that

is, 0.05% of the ideal radius.

47. We have }
d
d
W
g
} 5 2bg22, so dW 5 2bg22 dg. 

Then }
d

d

W

W
m

ea

o

r

o

th

n} 5 }
2

2

b
b
(
(
5
3
.
2
2
)
)
2

2

2

2

d
d
g
g

} 5 }
5
3
.
2
2

2

2} < 37.87. The ratio is

about 37.87 to 1.

48. (a) Note that T 5 2pL1/2g21/2, so }
d
d
T
g
} 5 2pL1/2g23/2 and 

dT 5 2pL1/2g23/2 dg.

(b) Note that dT and dg have opposite signs. Thus, if g
increases, T decreases and the clock speeds up.

(c) 2pL1/2g23/2 dg 5 dT

2p(100)1/2(980)23/2 dg 5 0.001

dg < 20.9765

Since dg < 20.9765, g < 980 2 0.9765 5 979.0235.

49. If f 9(x) Þ 0, we have x2 5 x1 2 }
f

f

9

(

(

x

x
1

1

)

)
} 5 x1 2 }

f 9(
0
x1)
} 5 x1.

Therefore x2 5 x1, and all later approximations are also

equal to x1.

50. If x1 5 h, then f 9(x1) 5 }
2h

1
1/2} and x2 5 h 2

5 h 2 2h 5 2h. If x1 5 2h, then 

f 9(x1) 5 2}
2Ï

1

hw
} and x2 5 2h 2 5 2h 1 2h 5 h

[23, 3] by [20.5, 2]

51. Note that f 9(x) 5 }
1
3

}x22/3 and so xn11 5 xn 2 }
f

f

9

(

(

x

x
n

n

)

)
}

5 xn 2 5 xn 2 3xn 5 22xn. For x1 5 1, we have

x2 5 22, x3 5 4, x4 5 28, and x5 5 16; )xn) 5 2n21.

[210, 10] by [23, 3]

52. (a) i. Q(a) 5 f (a) implies that b0 5 f (a).

ii. Since Q9(x) 5 b1 1 2b2(x 2 a), Q9(a) 5 f 9(a) 
implies that b1 5 f 9(a).

iii. Since Q0(x) 5 2b2, Q0(a) 5 f 0(a) implies that 

b2 5 }
f 0

2
(a)
}

In summary, b0 5 f (a), b1 5 f 9(a), and b2 5 }
f 0

2
(a)
}.

(b) f (x) 5 (1 2 x)21

f 9(x) 5 21(1 2 x)22(21) 5 (1 2 x)22

f 0(x) 5 22(1 2 x)23(21) 5 2(1 2 x)23

Since f (0) 5 1, f 9(0) 5 1, and f 0(0) 5 2, the

coefficients are b0 5 1, b1 5 1, and b2 5 }
2
2

} 5 1. The

quadratic approximation is Q(x) 5 1 1 x 1 x2.

(c)

[22.35, 2.35] by [21.25, 3.25]

As one zooms in, the two graphs quickly become
indistinguishable. They appear to be identical.

(d) g(x) 5 x21

g 9(x) 5 2x22

g 0(x) 5 2x23

Since g(1) 5 1, g9(1) 5 21, and g 0(1) 5 2, the

coefficients are bo 5 1, b1 5 21, and b2 5 }
2
2

} 5 1. The

quadratic approximation is

Q(x) 5 1 2 (x 2 1) 1 (x 2 1)2.

[21.35, 3.35] by [21.25, 3.25]

As one zooms in, the two graphs quickly become
indistinguishable. They appear to be identical.

xn
1/3

}

}
xn

2

3

2/3

}

h1/2
}
2}

2h
1
1/2}

h1/2
}
}
2h

1
1/2}
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(e) h(x) 5 (1 1 x)1/2

h9(x) 5 }
1
2

}(1 1 x)21/2

h0(x) 5 2}
1
4

}(1 1 x)23/2

Since h(0) 5 1, h9(1) 5 }
1
2

}, and h0(1) 5 2}
1
4

}, the

coefficients are b0 5 1, b1 5 }
1
2

}, and b2 5 5 2}
1
8

}. 

The quadratic approximation is Q(x) 5 1 1 }
2
x

} 2 }
x
8

2
}.

[21.35, 3.35] by [21.25, 3.25]

As one zooms in, the two graphs quickly become
indistinguishable. They appear to be identical.

(f) The linearization of any differentiable function u(x) at

x 5 a is L(x) 5 u(a) 1 u9(a)(x 2 a) 5 b0 1 b1(x 2 a),

where b0 and b1 are the coefficients of the constant and

linear terms of the quadratic approximation. Thus, the

linearization for f (x) at x 5 0 is 1 1 x; the linearization

for g(x) at x 5 1 is 1 2 (x 2 1) or 2 2 x; and the

linearization for h(x) at x 5 0 is 1 1 }
2
x

}.

53. Just multiply the corresponding derivative formulas by dx.

(a) Since }
d
d
x
}(c) 5 0, d(c) 5 0.

(b) Since }
d
d
x
}(cu) 5 c}

d
d
u
x
}, d(cu) 5 c du.

(c) Since }
d
d
x
}(u + v) 5 }

d
d
u
x
} 1 }

d
d

v
x
}, d(u 1 v) 5 du 1 dv

(d) Since }
d
d
x
}(u ? v) 5 u}

d
d

v
x
} 1 v}

d
d
u
x
}, d(u ? v) 5 u dv 1 v du.

(e) Since }
d
d
x
}1}

u
v

}2 5 , d1}
u
v

}2 5 }
v du

v
2

2
u dv

}.

(f) Since }
d
d
x
}un 5 nun21}

d
d
u
x
}, d(un) 5 nun21 du.

54. lim
x→0

}
tan

x
x

} 5 lim
x→0

}
sin x/

x
cos x
}

5 lim
x→0 1}co

1
s x
} }

sin
x

x
}2

5 1 lim
x→0

}
co

1
s x
}21 lim

x→0
}
sin

x
x

}2
5 (1)(1) 5 1.

55. g(a) 5 c, so if E(a) 5 0, then g(a) 5 f (a) and c 5 f (a).

Then E(x) 5 f (x) 2 g(x) 5 f (x) 2 f (a) 2 m(x 2 a).

Thus, }
x
E
2

(x)
a

} 5 }
f (x

x
) 2

2

f
a
(a)

} 2 m.

lim
x→a

}
f (x

x
) 2

2

f
a
(a)

} 5 f 9(a), so lim
x→a

}
x
E
2

(x)
a

} 5 f 9(a) 2 m.

Therefore, if the limit of }
x
E
2

(x)
a

} is zero, then m 5 f 9(a) and

g(x) 5 L(x).

■ Section 4.6 Related Rates (pp. 232–241)

Exploration 1 Sliding Ladder

1. Here the x-axis represents the ground and the y-axis

represents the wall. The curve (x1, y1) gives the position of

the bottom of the ladder (distance from the wall) at any

time t in 0 # t # }
1
3
3
}. The curve (x2, y2) gives the position

of the top of the ladder at any time in 0 # t # }
1
3
3
}.

2. 0 # t # }
1
3
3
}

3. This is a snapshot at t < 3.1. The top of the ladder is
moving down the y-axis and the bottom of the ladder is
moving to the right on the x-axis. Both axes are hidden
from view.

[21, 15] by [21, 15]

4. }
d
d
y
t
} 5 y9(t) 5 2}

Ï1w3w2

9

w
t

2w 9wt2w
}

y9(0.5) < 20.348 ft/sec2, y9(1) < 20.712 ft/sec2,

y9(1.5) < 21.107 ft/sec2, y9(2) < 21.561 ft/sec2.

Since  lim
t→(13/3)2

y9(t) 5 2`, the speed of the top of the ladder

is infinite as it hits the ground.

Quick Review 4.6
1. D 5 Ï(7w 2w 0w)2w 1w (w0w 2w 5w)2w 5 Ï4w9w 1w 2w5w 5 Ï7w4w
2. D 5 Ï(bw 2w 0w)2w 1w (w0w 2w aw)2w 5 Ïaw2w1w bw2w

3. Use implicit differentiation.

}
d
d
x
}(2xy 1 y2) 5 }

d
d
x
}(x 1 y)

2x}
d
d
y
x
} 1 2y(1) 1 2y}

d
d
y
x
} 5 (1) 1 }

d
d
y
x
}

(2x 1 2y 2 1)}
d
d
y
x
} 5 1 2 2y

}
d
d
y
x
} 5 }

2x
1
1

2

2y
2
2

y
1

}

v}
d
d
u
x
} 2 u}

d
d

v
x
}

}}
v2

2}
1
4

}

}
2
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4. Use implicit differentiation.

}
d
d
x
}(x sin y) 5 }

d
d
x
}(1 2 xy)

(x)(cos y)}
d
d

y
x
} 1 (sin y)(1) 5 2x}

d
d

y
x
} 2 y(1)

(x 1 x cos y)}
d
d

y
x
} 5 2y 2 sin y

}
d
d

y
x
} 5 }

x
2

1

y 2

x c
s
o
in
s

y
y

}

}
d
d

y
x
} 5 2}

x
y
1

1

x
s
c
in
os

y
y

}

5. Use implicit differentiation.

}
d
d
x
}x2 5 }

d
d
x
} tan y

2x 5 sec2 y}
d
d

y
x
}

}
d
d

y
x
} 5 }

se
2
c
x
2 y
}

}
d
d

y
x
} 5 2x cos2 y

6. Use implicit differentiation.

}
d
d
x
} ln (x 1 y) 5 }

d
d
x
}(2x)

}
x 1

1
y

}11 1 }
d
d

y
x
}2 5 2

1 1 }
d
d

y
x
} 5 2(x 1 y)

}
d
d

y
x
} 5 2x 1 2y 2 1

7. Using A(22, 1) we create the parametric equations 
x 5 22 1 at and y 5 1 1 bt, which determine a line 
passing through A at t 5 0. We determine a and b so that
the line passes through B(4, 23) at t 5 1. Since 
4 5 22 1 a, we have a 5 6, and since 23 5 1 1 b, we
have b 5 24. Thus, one parametrization for the line
segment is x 5 22 1 6t, y 5 1 2 4t, 0 # t # 1. (Other
answers are possible.)

8. Using A(0, 24), we create the parametric equations 
x 5 0 1 at and y 5 24 1 bt, which determine a line
passing through A at t 5 0. We now determine a and b so
that the line passes through B(5, 0) at t 5 1. Since 
5 5 0 1 a, we have a 5 5, and since 0 5 24 1 b, we have
b 5 4. Thus, one parametrization for the line segment is
x 5 5t, y 5 24 1 4t, 0 # t # 1. (Other answers are
possible.)

9. One possible answer: }
p

2
} # t # }

3
2
p
}

10. One possible answer: }
3
2
p
} # t # 2p

Section 4.6 Exercises

1. Since }
d
d
A
t
} 5 }

d
d
A
r
} }

d
d
r
t
}, we have }

d
d
A
t
} 5 2pr}

d
d
r
t
}.

2. Since }
d
d
S
t
} 5 }

d
d
S
r
} }

d
d
r
t
}, we have }

d
d
S
t
} 5 8pr}

d
d
r
t
}.

3. (a) Since }
d
d
V
t
} 5 }

d
d
V
h
} }

d
d
h
t
}, we have }

d
d
V
t
} 5 pr2}

d
d
h
t
}.

(b) Since }
d
d
V
t
} 5 }

d
d
V
r
} }

d
d
r
t
}, we have }

d
d
V
t
} 5 2prh}

d
d
r
t
}.

(c) }
d
d
V
t
} 5 }

d
d
t
}pr2h 5 p}

d
d
t
}(r2h)

}
d
d
V
t
} 5 p1r2}

d
d
h
t
} 1 h(2r)}

d
d
r
t
}2

}
d
d
V
t
} 5 pr2}

d
d
h
t
} 1 2prh}

d
d
r
t
}

4. (a) }
d
d
P
t
} 5 }

d
d
t
}(RI2)

}
d
d
P
t
} 5 R}

d
d
t
}I2 1 I2}

d
d
R
t
}

}
d
d
P
t
} 5 R12I}

d
d
I
t
}2 1 I2}

d
d
R
t
}

}
d
d
P
t
} 5 2RI}

d
d
I
t
} 1 I2}

d
d
R
t
}

(b) If P is constant, we have }
d
d
P
t
} 5 0, which means

2RI}
d
d
I
t
} 1 I2}

d
d
R
t
} 5 0, or }

d
d
R
t
} 5 2}

2
I
R
} }

d
d
I
t
} 5 2}

2
I
P
3} }

d
d
I
t
}.

5. }
d
d
s
t
} 5 }

d
d
t
}Ïx2w 1w yw2w1w zw2w

}
d
d
s
t
} 5 }

2Ïx2w 1w
1

yw2w1w zw2w
} }

d

d

t
}(x2 1 y2 1 z2)

}
d
d
s
t
} 5 }

2Ïx2w 1w
1

yw2w1w zw2w
}12x}

d
d
x
t
} 1 2y}

d
d
y
t
} 1 2z}

d
d
z
t
}2

}
d
d
s
t
} 5

6. }
d
d
A
t
} 5 }

d
d
t
}1}

1
2

}ab sin u2
}
d
d
A
t
} 5 }

1
2

}1}
d
d
a
t
} ? b ? sin u 1 a ? }

d
d
b
t
} ? sin u 1 ab ? }

d
d
t
} sin u2

}
d
d
A
t
} 5 }

1
2

}1b sin u}
d
d
a
t
} 1 a sin u}

d
d
b
t
} 1 ab cos u}

d
d
u

t
}2

7. (a) Since V is increasing at the rate of 1 volt/sec,

}
d
d
V
t
} 5 1 volt/sec.

(b) Since I is decreasing at the rate of }
1
3

} amp/sec,

}
d
d
I
t
} 5 2}

1
3

} amp/sec.

(c) Differentiating both sides of V 5 IR, we have 

}
d
d
V
t
} 5 I}

d
d
R
t
} 1 R}

d
d
I
t
}.

x}
d
d
x
t
} 1 y}

d
d
y
t
} 1 z}

d
d
z
t
}

}}
Ïx2w 1w yw2w1w zw2w

176 Section 4.6



(d) Note that V 5 IR gives 12 5 2R, so R 5 6 ohms. Now
substitute the known values into the equation in (c).

15 2}
d
d
R
t
} 1 612}

1
3

}2
3 5 2}

d
d
R
t
}

}
d
d
R
t
} 5 }

3
2

} ohms/sec

R is changing at the rate of }
3
2

} ohms/sec. Since this

value is positive, R is increasing.

8. Step 1:
r 5 radius of plate
A 5 area of plate

Step 2:

At the instant in question, }
d
d
r
t
} 5 0.01 cm/sec, r 5 50 cm.

Step 3:

We want to find }
d
d
A
t
}.

Step 4:

A 5 pr2

Step 5:

}
d
d
A
t
} 5 2pr}

d
d
r
t
}

Step 6:

}
d
d
A
t
} 5 2p(50)(0.01) 5 p cm2/sec

At the instant in question, the area is increasing at the rate

of p cm2/sec.

9. Step 1:
l 5 length of rectangle
w 5 width of rectangle
A 5 area of rectangle
P 5 perimeter of rectangle
D 5 length of a diagonal of the rectangle

Step 2:

At the instant in question,

}
d
d

l
t
} 5 22 cm/sec, }

d
d
w
t
} 5 2 cm/sec, l 5 12 cm,

and w 5 5 cm.

Step 3:

We want to find }
d
d
A
t
}, }

d
d
P
t
}, and }

d
d
D
t
}.

Steps 4, 5, and 6:

(a) A 5 lw

}
d
d
A
t
} 5 l}

d
d
w
t
} 1 w}

d
d

l
t
}

}
d
d
A
t
} 5 (12)(2) 1 (5)(22) 5 14 cm2/sec

The rate of change of the area is 14 cm2/sec.

(b) P 5 2l 1 2w

}
d
d
P
t
} 5 2}

d
d
l
t
} 1 2}

d
d
w
t
}

}
d
d
P
t
} 5 2(22) 1 2(2) 5 0 cm/sec

The rate of change of the perimeter is 0 cm/sec.

(c) D 5 Ïl2w 1w ww2w

}
d
d
D
t
} 5 }

2Ïl2w
1

1w ww2w
}12l}

d
d
l
t
} 1 2w}

d
d
w
t
}2 5

}
d
d
D
t
} 5}

(12)

Ï
(2

1w
2

2w
)
2w

1

1w
(

5w
5
2w
)(2)

}5 2}
1
1
4
3
} cm/sec

The rate of change of the length of the diameter is 

2}
1
1
4
3
} cm/sec.

(d) The area is increasing, because its derivative is positive.
The perimeter is not changing, because its derivative is
zero. The diagonal length is decreasing, because its
derivative is negative.

10. Step 1:
x, y, z 5 edge lengths of the box
V 5 volume of the box
S 5 surface area of the box
s 5 diagonal length of the box

Step 2:

At the instant in question,

}
d
d
x
t
} 5 1 m/sec, }

d
d
y
t
} 5 22 m/sec, }

d
d
z
t
} 5 1 m/sec, x 5 4 m,

y = 3 m, and z 5 2 m.

Step 3:

We want to find }
d
d
V
t
}, }

d
d
S
t
}, and }

d
d
s
t
}.

Steps 4, 5, and 6:

(a) V 5 xyz

}
d
d
V
t
} 5 xy}

d
d
z
t
} 1 xz}

d
d
y
t
} 1 yz}

d
d
x
t
}

}
d
d
V
t
} 5 (4)(3)(1) 1 (4)(2)(22) 1 (3)(2)(1) 5 2 m3/sec

The rate of change of the volume is 2 m3/sec.

(b) S 5 2(xy 1 xz1 yz)

}
d
d
S
t
} 5 21x}

d
d
y
t
} 1 y}

d
d
x
t
} 1 x}

d
d
z
t
} 1 z}

d
d
x
t
} 1 y}

d
d
z
t
} 1 z}

d
d
y
t
}2

}
d
d
S
t
} 5 2[(4)(22) 1 (3)(1) 1 (4)(1) 1

(2)(1) 1 (3)(1) 1 (2)(22)] 5 0 m2/sec

The rate of change of the surface area is 0 m2/sec.

l}
d
d

l
t
} 1 w}

d
d
w
t
}

}}
Ïl2w 1w ww2w
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10. continued

(c) s 5 Ïx2w 1w yw2w1w zw2w

}
d
d
s
t
} 5 12x}

d
d
x
t
} 1 2y}

d
d
y
t
} 1 2z}

d
d
y
z
}2

5

}
d
d
s
t
} 5 5 }

Ï
0

2w9w
} 5 0 m/sec

The rate of change of the diagonal length is 0 m/sec.

11. Step 1:
s 5 (diagonal) distance from antenna to airplane
x 5 horizontal distance from antenna to airplane

Step 2:
At the instant in question,

s 5 10 mi and }
d
d
s
t
} 5 300 mph.

Step 3:

We want to find }
d
d
x
t
}.

Step 4:
x2 1 49 5 s2 or x 5 Ïs2w 2w 4w9w

Step 5:

}
d
d
x
t
} 5 }

2Ïs2w
1

2w 4w9w
}12s}

d
d
s
t
}2 5 }

Ïs2w
s

2w 4w9w
} }

d
d
s
t
}

Step 6:

}
d
d
x
t
} 5 }

Ï1w0w
1
2

0

w2w 4w9w
}(300) 5 }

Ï
300

5w
0

1w
} mph < 420.08 mph

The speed of the airplane is about 420.08 mph.

12. Step 1:
h 5 height (or depth) of the water in the trough
V 5 volume of water in the trough

Step 2:

At the instant in question, }
d
d
V
t
} 5 2.5 ft3/min and h 5 2 ft.

Step 3:

We want to find }
d
d
h
t
}.

Step 4:

The width of the top surface of the water is }
4
3

}h, so we have

V 5 }
1
2

}(h)1}
4
3

}h2(15), or V 5 10h2

Step 5:

}
d
d
V
t
} 5 20h}

d
d
h
t
}

Step 6:

2.5 5 20(2)}
d
d
h
t
}

}
d
d
h
t
} 5 0.0625 5 }

1
1
6
} ft/min

The water level is increasing at the rate of }
1
1
6
} ft/min.

13. Step 1:
x 5 distance from wall to base of ladder
y 5 height of top of ladder
A 5 area of triangle formed by the ladder, wall, and ground
u 5 angle between the ladder and the ground

Step 2:

At the instant in question, x 5 12 ft and }
d
d
x
t
} 5 5 ft/sec.

Step 3:

We want to find 2}
d
d
y
t
}, }

d
d
A
t
}, and }

d
d
u

t
}.

Step 4, 5, and 6:

(a) x2 1 y2 5 169

2x}
d
d
x
t
} 1 2y}

d
d
y
t
} 5 0

To evaluate, note that, at the instant in question,

y 5 Ï1w6w9w 2w xw2w 5 Ï1w6w9w 2w 1w2w2w 5 5. 

Then 2(12)(5) 1 2(5)}
d
d
y
t
} 5 0

}
d
d
y
t
} 5 212 ft/sec 1or 2}

d
d
y
t
} 5 12 ft/sec2

The top of the ladder is sliding down the wall at the

rate of 12 ft/sec. (Note that the downward rate of

motion is positive.)

(b) A 5 }
1
2

}xy

}
d
d
A
t
} 5 }

1
2

}1x}
d
d
y
t
} 1 y}

d
d
x
t
}2

Using the results from step 2 and from part (a), we

have }
d
d
A
t
} 5 }

1
2

}[(12)(212) 1 (5)(5)] 5 2}
11
2
9

} ft/sec.

The area of the triangle is changing at the rate of 

259.5 ft2/sec.

(c) tan u 5 }
y
x

}

sec2 u}
d
d
u

t
} 5

Since tan u 5 }
1
5
2
}, we have 1for 0 # u , }

p

2
}2

cos u 5 }
1
1
2
3
} and so sec2 u 5 5 }

1
1
6
4
9
4

}.

Combining this result with the results from step 2 and

from part (a), we have }
1
1
6
4
9
4

} }
d
d
u

t
} 5}

(12)(21
1
2
2
)

2
2 (5)(5)
}, so

}
d
d
u

t
} 5 21 radian/sec. The angle is changing at the rate

of 21 radian/sec.

1
}

1}
1
1

2
3
}2

2

x}
d
d
y
t
} 2 y}

d
d
x
t
}

}}
x2

(4)(1) 1 (3)(22) 1 (2)(1)
}}}

Ï4w2w1w 3w2w1w 2w2w

x}
d
d
x
t
} 1 y}

d
d
y
t
} 1 z}

d
d
z
t
}

}}
Ïx2w 1w yw2w1w zw2w

1
}}
2Ïx2w 1w yw2w1w zw2w
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14. Step 1:

s 5 length of kite string
x 5 horizontal distance from Inge to kite

Step 2:

At the instant in question, }
d
d
x
t
} 5 25 ft/sec and s 5 500 ft

Step 3:

We want to find }
d
d
s
t
}.

Step 4:

x2 1 3002 5 s2

Step 5:

2x}
d
d
x
t
} 5 2s}

d
d
s
t
} or x}

d
d
x
t
} 5 s}

d
d
s
t
}

Step 6:

At the instant in question, since x2 1 3002 5 s2, we have 

x 5 Ïs2w 2w 3w0w0w2w 5 Ï5w0w0w2w2w 3w0w0w2w 5 400.

Thus (400)(25) 5 (500)}
d
d
s
t
}, so }

d
d
s
t
} 5 20 ft/sec. Inge must let

the string out at the rate of 20 ft/sec.

15. Step 1:

The cylinder shown represents the shape of the hole.
r 5 radius of cylinder
V 5 volume of cylinder

Step 2:

At the instant in question, }
d
d
r
t
} 5 }

0.
3
00

m
1
in
in.

} 5 }
30

1
00
} in./min

and (since the diameter is 3.800 in.), r 5 1.900 in.

Step 3:

We want to find }
d
d
V
t
}.

Step 4:

V 5 pr2(6) 5 6pr2

Step 5:

}
d
d
V
t
} 5 12pr}

d
d
r
t
}

Step 6:

}
d
d
V
t
} 5 12p(1.900)1}30

1
00
}2 5 }

2
1
5
9
0
p

0
} 5 0.0076p

< 0.0239 in3/min

The volume is increasing at the rate of approximately

0.0239 in3/min.

16. Step 1:

r 5 base radius of cone
h 5 height of cone
V 5 volume of cone

Step 2:

At the instant in question, h 5 4 m and }
d
d
V
t
} 5 10 m3/min.

Step 3:

We want to find }
d
d
h
t
} and }

d
d
r
t
}.

Step 4:

Since the height is }
3
8

} of the base diameter, we have 

h 5 }
3
8

}(2r) or r 5 }
4
3

}h.

We also have V 5 }
1
3

}pr2h 5 }
1
3

}p1}
4
3

}h2
2
h 5 }

16
2
p

7
h3

}. We will

use the equations V 5 }
16

2
p

7
h3

} and r 5 }
4
3

}h.

Steps 5 and 6:

(a) }
d
d
V
t
} 5 }

16p

9
h2

} }
d
d
h
t
}

10 5 }
16p

9
(4)2
} }

d
d
h
t
}

}
d
d
h
t
} 5 }

12
4
8
5
p

} m/min 5 }
1
3
1
2
2
p

5
} cm/min

The height is changing at the rate of 

}
1
3
1
2
2
p

5
} < 11.19 cm/min.

(b) Using the results from Step 4 and part (a), we have

}
d
d
r
t
} 5 }

4
3

} }
d
d
h
t
} 5 }

4
3

}1}13
1
2
2
p

5
}2 5 }

3
8
7
p

5
} cm/min.

The radius is changing at the rate of 

}
3
8
7
p

5
} < 14.92 cm/min.

h

r

6 in.

r

Inge

Kite

300 ft

x

s
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17. Step 1:

r 5 radius of top surface of water
h 5 depth of water in reservoir
V 5 volume of water in reservoir

Step 2:

At the instant in question, }
d
d
V
t
} 5 250 m3/min and h 5 5 m.

Step 3:

We want to find 2}
d
d
h
t
} and }

d
d
r
t
}.

Step 4:

Note that }
h
r

} 5 }
4
6
5
} by similar cones, so r 5 7.5h. 

Then V 5 }
1
3

}pr2h 5 }
1
3

}p(7.5h)2h 5 18.75ph3

Step 5 and 6:

(a) Since V 5 18.75ph3, }
d
d
V
t
} 5 56.25ph2}

d
d
h
t
}. 

Thus 250 5 56.25p(52)}
d
d
h
t
}, and so 

}
d
d
h
t
} 5 2}

22
8
5p
} m/min 5 2}

9
3
p

2
} cm/min.

The water level is falling by }
9
3
p

2
} < 1.13 cm/min. 

(Since }
d
d
h
t
} , 0, the rate at which the water level is

falling is positive.)

(b) Since r 5 7.5h, }
d
d
r
t
} 5 7.5}

d
d
h
t
} 5 2}

3
8
p

0
} cm/min. The rate

of change of the radius of the water’s surface is 

2}
3
8
p

0
} < 28.49 cm/min.

18. (a) Step 1:
y 5 depth of water in bowl
V 5 volume of water in bowl

Step 2:

At the instant in question, }
d
d
V
t
} 5 26 m3/min and 

y 5 8 m.

Step 3:

We want to find the value of }
d
d
y
t
}.

Step 4:

V 5 }
p

3
}y2(39 2 y) or V 5 13py2 2 }

p

3
}y3

Step 5:

}
d
d
V
t
} 5 (26py 2 py2)}

d
d
y
t
}

Step 6:

26 5 [26p(8) 2 p(82)]}
d
d
y
t
}

26 5 144p}
d
d
y
t
}

}
d
d
y
t
} 5 2}

24
1
p
} < 20.01326 m/min

or 2}
6
2
p

5
} < 21.326 cm/min

(b) Since r2 1 (13 2 y)2 5 132,

r 5 Ï1w6w9w 2w (w1w3w 2w yw)2w 5 Ï2w6wyw2w yw2w.

(c) Step 1:
y 5 depth of water
r 5 radius of water surface
V 5 volume of water in bowl

Step 2:

At the instant in question, }
d
d
V
t
} 5 26 m3/min, y 5 8 m,

and therefore (from part (a)) }
d
d
y
t
} 5 2}

24
1
p
} m/min.

Step 3:

We want to find the value of }
d
d
r
t
}.

Step 4:

From part (b), r 5 Ï2w6wyw2w yw2w.

Step 5:

}
d
d
r
t
} 5 }

2Ï2w6w
1

yw2w yw2w
}(26 2 2y)}

d
d
y
t
} 5 }

Ï
1

2w
3

6wy

2

w2w
y

yw2w
} }

d
d
y
t
}

Step 6:

}
d
d
r
t
} 5 }

Ï2w
1

6w
3

(8w
2

)w2w
8

8w2w
}1}22

1
4p
}2 5 }

1
5
2
}12}

24
1
p
}2

5 2}
28

5
8p
} < 20.00553 m/min 

or 2}
7
1
2
2
p

5
} < 20.553 cm/min

19. Step 1:
r 5 radius of spherical droplet
S 5 surface area of spherical droplet
V 5 volume of spherical droplet

Step 2:
No numerical information is given.

Step 3:

We want to show that }
d
d
r
t
} is constant.

Step 4:

S 5 4pr2, V 5 }
4
3

}pr3, }
d
d
V
t
} 5 kS for some constant k

Steps 5 and 6:

Differentiating V 5 }
4
3

}pr3, we have }
d
d
V
t
} 5 4pr2}

d
d
r
t
}.

Substituting kS for }
d
d
V
t
} and S for 4pr2, we have kS 5 S}

d
d
r
t
},

or }
d
d
r
t
} 5 k.

r

h

45 m

6 m
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20. Step 1:
r 5 radius of spherical balloon
S 5 surface area of spherical balloon
V 5 volume of spherical balloon

Step 2:

At the instant in question, }
d
d
V
t
} 5 100p ft3/min and r 5 5 ft.

Step 3:

We want to find the values of }
d
d
r
t
} and }

d
d
S
t
}.

Steps 4, 5, and 6:

(a) V 5 }
4
3

}pr3

}
d
d
V
t
} 5 4pr2}

d
d
r
t
}

100p 5 4p(5)2}
d
d
r
t
}

}
d
d
r
t
} 5 1 ft/min

The radius is increasing at the rate of 1 ft/min.

(b) S 5 4pr2

}
d
d
S
t
} 5 8pr}

d
d
r
t
}

}
d
d
S
t
} 5 8p(5)(1)

}
d
d
S
t
} 5 40p ft2/min

The surface area is increasing at the rate of 

40p ft2/min.

21. Step 1:
l 5 length of rope
x 5 horizontal distance from boat to dock
u 5 angle between the rope and a vertical line

Step 2:

At the instant in question, }
d
d

l
t
} 5 22 ft/sec and l 5 10 ft.

Step 3:

We want to find the values of 2}
d
d
x
t
} and }

d
d
u

t
}.

Step 4, 5, and 6:

(a) x 5 Ïl2w 2w 3w6w

}
d
d
x
t
} 5 }

Ïl2w
l

2w 3w6w
} }

d
d

l
t
}

}
d
d
x
t
} 5 }

Ï1w0w
1
2

0

w2w 3w6w
}(22) 5 22.5 ft/sec

The boat is approaching the dock at the rate of 

2.5 ft/sec.

(b) u 5 cos21 }
6

l
}

}
d
d
u

t
} 5 2 12}

l
6
2}2}

d
d
l
t
}

}
d
d
u

t
} 5 2}

Ï1w 2w
1

0w.6w2w
}12}

1
6
02}2(22) 5 2}

2
3
0
} radian/sec

The rate of change of angle u is 2}
2
3
0
} radian/sec.

22. Step 1:
x 5 distance from origin to bicycle
y 5 height of balloon (distance from origin to balloon)
s 5 distance from balloon to bicycle

Step 2:

We know that }
d
d
y
t
} is a constant 1 ft/sec and }

d
d
x
t
} is a constant 

17 ft/sec. Three seconds before the instant in question, the
values of x and y are x 5 0 ft and y 5 65 ft. Therefore, at
the instant in question x 5 51 ft and y 5 68 ft.

Step 3:

We want to find the value of }
d
d
s
t
} at the instant in question.

Step 4:

s 5 Ïx2w 1w yw2w

Step 5:

}
d
d
s
t
} 5 }

2Ïx2w
1

1w yw2w
}12x}

d
d
x
t
} 1 2y}

d
d
y
t
}2 5

Step 6:

}
d
d
s
t
} 5 5 11 ft/sec

The distance between the balloon and the bicycle is
increasing at the rate of 11 ft/sec.

23. (a) }
d
d
c
t
} 5 }

d
d
t
}(x3 2 6x2 1 15x)

5 (3x2 2 12x 1 15)}
d
d
x
t
}

5 [3(2)2 2 12(2) 1 15](0.1)

5 0.3

}
d
d
r
t
} 5 }

d
d
t
}(9x) 5 9}

d
d
x
t
} 5 9(0.1) 5 0.9

}
d
d
p
t
} 5 }

d
d
r
t
} 2 }

d
d
c
t
} 5 0.9 2 0.3 5 0.6

(b) }
d
d
c
t
} 5 }

d
d
t
}1x3 2 6x2 1 }

4
x
5
}2

5 13x2 2 12x 2 }
4
x
5
2}2}

d
d
x
t
}

5 33(1.5)2 2 12(1.5) 2 }
1
4
.5
5

2}4(0.05)

5 21.5625

}
d
d
r
t
} 5 }

d
d
t
}(70x) 5 70}

d
d
x
t
} 5 70(0.05) 5 3.5

}
d
d
p
t
} 5 }

d
d
r
t
} 2 }

d
d
c
t
} 5 3.5 2 (21.5625) 5 5.0625

(51)(17) 1 (68)(1)
}}

Ï5w1w2w1w 6w8w2w

x}
d
d
x
t
} 1 y}

d
d
y
t
}

}}
Ïx2w 1w yw2w

1
}}

!1§ 2§ 1§}
6
l
}§2

2

§
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24. (a) Note that the level of the coffee in the cone is not
needed until part (b).
Step 1:
V1 5 volume of coffee in pot
y 5 depth of coffee in pot

Step 2:

}
d

d

V

t
1} 5 10 in3/min

Step 3:

We want to find the value of }
d

d

y

t
}.

Step 4:

V1 5 9py

Step 5:

}
d

d

V

t
1} 5 9p}

d
d
y
t
}

Step 6:

10 5 9p}
d
d
y
t
}

}
d
d
y
t
} 5 }

9
1
p

0
} < 0.354 in./min

The level in the pot is increasing at the rate of

approximately 0.354 in./min.

(b) Step 1:
V2 5 volume of coffee in filter
r 5 radius of surface of coffee in filter
h 5 depth of coffee in filter

Step 2:

At the instant in question, }
d

d

V

t
2} 5 210 in3/min and 

h 5 5 in.

Step 3:

We want to find 2}
d
d
h
t
}.

Step 4:

Note that }
h
r

} 5 }
3
6

}, so r 5 }
h
2

}.

Then V2 5 }
1
3

}pr2h 5 }
p

1
h
2

3
}.

Step 5:

}
d

d

V

t
2} 5 }

p

4
h2
} }

d
d
h
t
}

Step 6:

210 5 }
p(

4
5)2
} }

d
d
h
t
}

}
d
d
h
t
} 5 2}

5
8
p
} in./min

Note that }
d
d
h
t
} , 0, so the rate at which the level is

falling is positive. The level in the cone is falling at the

rate of }
5
8
p
} < 0.509 in./min.

25. Step 1:
Q 5 rate of CO2 exhalation (mL/min)
D 5 difference between CO2 concentration in blood 

pumped to the lungs and CO2 concentration in blood 
returning from the lungs (mL/L)

y 5 cardiac output

Step 2:

At the instant in question, Q 5 233 mL/min, D 5 41 mL/L,

}
d
d
D
t
} 5 22 (mL/L)/min, and }

d
d
Q
t
} 5 0 mL/min2.

Step 3:

We want to find the value of }
d
d
y
t
}.

Step 4:

y 5 }
Q
D

}

Step 5:

}
d
d
y
t
} 5

Step 6:

}
d
d
y
t
} 5 5 }

1
4
6
6
8
6
1

} < 0.277 L/min2

The cardiac output is increasing at the rate of

approximately 0.277 L/min2.

26. Step 1:

x 5 x-coordinate of particle’s location
y 5 y-coordinate of particle’s location
u 5 angle of inclination of line joining the particle to the

origin.

Step 2:

At the instant in question,

}
d
d
x
t
} 5 10 m/sec and x 5 3 m.

Step 3:

We want to find }
d
d
u

t
}.

Step 4:

Since y 5 x2, we have tan u 5 }
y
x

} 5 }
x
x

2
} 5 x and so, for 

x . 0, u 5 tan21 x.

y

x

(x, y)

u

(41)(0) 2 (233)(22)
}}}

(41)2

D}
d
d
Q
t
} 2 Q}

d
d
D
t
}

}}
D2
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Step 5:

}
d
d
u

t
} 5 }

1 1

1
x2} }

d
d
x
t
}

Step 6:

}
d
d
u

t
} 5 }

1 1

1
32}(10) 5 1 radian/sec

The angle of inclination is increasing at the rate of

1 radian/sec.

27. Step 1:

x 5 x-coordinate of particle’s location
y 5 y-coordinate of particle’s location
u 5 angle of inclination of line joining the particle to the 

origin

Step 2:

At the instant in question, }
d
d
x
t
} 5 28 m/sec and x 5 24 m.

Step 3:

We want to find }
d
d
u

t
}.

Step 4:

Since y 5 Ï2wxw, we have tan u 5 }
y
x

} 5 }
Ï

x
2wxw
} 5 2(2x)21/2,

and so, for x , 0,

u 5 p 1 tan21 [2 (2x)21/2] 5 p 2 tan21 (2x)21/2.

Step 5:

}
d
d
u

t
} 5 2 12}

1
2

}(2x)23/2(21)2}
d
d
x
t
}

5 2 }
2(2

1
x)3/2} }

d
d
x
t
}

5 }
2Ï2wxw

1

(x 2 1)
} }

d

d

x

t
}

Step 6:

}
d
d
u

t
} 5 }

2Ï4w(2

1

4 2 1)
}(28) 5 }

2
5

} radian/sec

The angle of inclination is increasing at the rate of 

}
2
5

} radian/sec.

28. Step 1:
x 5 x-coordinate of particle
y 5 y-coordinate of particle
D 5 distance from origin to particle

Step 2:

At the instant in question, x 5 5 m, y 5 12 m,

}
d
d
x
t
} 5 21 m/sec, and }

d
d
y
t
} 5 25 m/sec.

Step 3:

We want to find }
d
d
D
t
}.

Step 4:

D 5 Ïx2w 1w yw2w

Step 5:

}
d
d
D
t
} 5 }

2Ïx2w
1

1w yw2w
}12x}

d
d
x
t
} 1 2y}

d
d
y
t
}2 5

Step 6:

}
d
d
D
t
} 5 5 25 m/sec

The particle’s distance from the origin is changing at the

rate of 25 m/sec.

29. Step 1:

x 5 distance from streetlight base to man
s 5 length of shadow

Step 2:

At the instant in question, }
d
d
x
t
} 5 25 ft/sec and x 5 10 ft.

Step 3:

We want to find }
d
d
s
t
}.

Step 4:

By similar triangles, }
6
s

} 5 }
s

1
1

6
x

}. This is equivalent to 

16s 5 6s 1 6x, or s 5 }
3
5

}x.

Step 5:

}
d
d
s
t
} 5 }

3
5

} }
d
d
x
t
}

Step 6:

}
d
d
s
t
} 5 }

3
5

}(25) 5 23ft/sec

The shadow length is changing at the rate of 23 ft/sec.

16 ft

6 ft

x s
Shadow

Street
light

(5)(21) 1 (12)(25)
}}}

Ï5w2w1w 1w2w2w

x}
d
d
x
t
} 1 y}

d
d
y
t
}

}}
Ïx2w 1w yw2w

1
}
1 2 1}

1
x

}2

1
}}
1 1 [(2x)21/2]2

y

x

(x, y)

θ
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30. Step 1:
s 5 distance ball has fallen
x 5 distance from bottom of pole to shadow

Step 2:

At the instant in question, s 5 161}
1
2

}2
2

5 4 ft and 

}
d
d
s
t
} 5 321}

1
2

}2 5 16 ft/sec.

Step 3:

We want to find }
d
d
x
t
}.

Step 4:

By similar triangles, }
x
50

2

2

30
s

} 5 }
5
x
0
}. This is equivalent to

50x 2 1500 5 50x 2 sx, or sx 5 1500. We will use 

x 5 1500s21.

Step 5:

}
d
d
x
t
} 5 21500s22}

d
d
s
t
}

Step 6:

}
d
d
x
t
} 5 21500(4)22(16) 5 21500 ft/sec

The shadow is moving at a velocity of 21500 ft/sec.

31. Step 1:
x 5 position of car (x 5 0 when car is right in front of 

you)
u 5 camera angle. (We assume u is negative until the car 

passes in front of you, and then positive.)

Step 2:

At the first instant in question, x 5 0 ft and }
d
d
x
t
} 5 264 ft/sec.

A half second later, x 5 }
1
2

}(264) 5 132 ft and 

}
d
d
x
t
} 5 264 ft/sec.

Step 3:

We want to find }
d
d
u

t
} at each of the two instants.

Step 4:

u 5 tan211}
13

x
2

}2
Step 5:

}
d
d
u

t
} 5 ? }

1
1
32
} }

d
d
x
t
}

Step 6:

When x 5 0: }
d
d
u

t
} 5 1}

1
1
32
}2(264) 5 2 radians/sec

When x 5 132: }
d
d
u

t
} 5 1}

1
1
32
}2(264) 5 1 radian/sec

32. Step 1:
r 5 radius of balls plus ice
S 5 surface area of ball plus ice
V 5 volume of ball plus ice

Step 2:

At the instant in question,

}
d
d
V
t
} 5 28 mL/min 5 28 cm3/min and r 5 }

1
2

}(20) = 10 cm.

Step 3:

We want to find 2}
d
d
S
t
}.

Step 4:

We have V 5 }
4
3

}pr3 and S 5 4pr2. These equations can be

combined by noting that r 5 1}
4
3
p

V
}2

1/3
, so S 5 4p1}

4
3
p

V
}2

2/3

Step 5:

}
d
d
S
t
} 5 4p1}

2
3

}21}
4
3
p

V
}2

21/3

1}
4
3
p
}2}

d
d
V
t
} 5 21}

4
3
p

V
}2

21/3
}
d
d
V
t
}

Step 6:

Note that V 5 }
4
3

}p(10)3 5 }
400

3
0p
}.

}
d
d
S
t
} 5 21}

4
3
p
} ? }

400
3
0p
}2

21/3
(28) 5 }

Ï
3
2

1w
1

0w
6

0w0w
} 5 21.6 cm2/min

Since }
d
d
S
t
} , 0, the rate of decrease is positive. The surface

area is decreasing at the rate of 1.6 cm2/min.

33. Step 1:
p 5 x-coordinate of plane’s position
x 5 x-coordinate of car’s position
s 5 distance from plane to car (line-of-sight)

Step 2:

At the instant in question,

p 5 0, }
d
d
p
t
} 5 120 mph, s 5 5 mi, and }

d
d
s
t
} 5 2160 mph.

Step 3:

We want to find 2}
d
d
x
t
}.

Step 4:

(x 2 p)2 1 32 5 s2

Step 5:

2(x 2 p)1}
d
d
x
t
} 2 }

d
d
p
t
}2 5 2s}

d
d
s
t
}

Step 6:

Note that, at the instant in question,

x 5 Ï5w2w2w 3w2w 5 4 mi.

2(4 2 0)1}
d
d
x
t
} 2 1202 5 2(5)(2160)

81}
d
d
x
t
} 2 1202 5 21600

}
d
d
x
t
} 2 120 5 2200

}
d
d
x
t
} 5 280 mph

The car’s speed is 80 mph.

1
}}

1 1 1}
1
1
3
3

2
2

}2
2

1
}}

1 1 1}
1
0
32
}2

2

1
}}

1 1 1}
13

x
2

}2
2
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34. Step 1:
s 5 shadow length
u 5 sun’s angle of elevation

Step 2:

At the instant in question,

s 5 60 ft and }
d
d
u

t
} 5 0.278/min 5 0.0015p radian/min.

Step 3:

We want to find 2}
d
d
s
t
}.

Step 4:

tan u 5 }
8
s
0
} or s 5 80 cot u

Step 5:

}
d
d
s
t
} 5 280 csc2 u}

d
d
u

t
}

Step 6:

Note that, at the moment in question, since tan u 5 }
8
6
0
0
} and

0 , u , }
p

2
}, we have sin u 5 }

4
5

} and so csc u 5 }
5
4

}.

}
d
d
s
t
} 5 2801}

5
4

}2
2
(0.0015p)

5 20.1875p }
m
f
i
t
n

} ? }
1
1
2

f
i
t
n

}

5 22.25p in./min

< 27.1 in./min

Since }
d
d
s
t
} , 0, the rate at which the shadow length is

decreasing is positive. The shadow length is decreasing at

the rate of approximately 7.1 in./min.

35. Step 1:
a 5 distance from origin to A
b 5 distance from origin to B
u 5 angle shown in problem statement

Step 2:

At the instant in question, }
d
d
a
t
} 5 22 m/sec, }

d
d
b
t
} 5 1 m/sec,

a 5 10 m, and b 5 20 m.

Step 3:

We want to find }
d
d
u

t
}.

Step 4:

tan u 5 }
a
b

} or u 5 tan21 1}
a
b

}2
Step 5:

}
d
d
u

t
} 5 5

Step 6:

}
d
d
u

t
} 5}

(20)(
1
2

0
2
2
)
1

2

2
(
0
1
2
0)(1)

}5 20.1 radian/sec

< 25.73 degrees/sec

To the nearest degree, the angle is changing at the rate

of 26 degrees per second.

36. Step 1:

a 5 distance from O to A
b 5 distance from O to B
c 5 distance from A to B

Step 2:

At the instant in question, a 5 5 nautical miles,

b 5 3 nautical miles, }
d
d
a
t
} 5 14 knots, and }

d
d
b
t
} 5 21 knots.

Step 3:

We want to find }
d
d
c
t
}.

Step 4:
Law of Cosines: c2 5 a2 1 b2 2 2ab cos 1208

c2 5 a2 1 b2 1 ab

Step 5:

2c}
d
d
c
t
} 5 2a}

d
d
a
t
} 1 2b}

d
d
b
t
} 1 a}

d
d
b
t
} 1 b}

d
d
a
t
}

Step 6:

Note that, at the instant in question,

c 5 Ïaw2w1w bw2w1w awbw 5 Ï(5w)2w 1w (w3w)2w 1w (w5w)(w3w)w 5 Ï4w9w 5 7

2(7)}
d
d
c
t
} 5 2(5)(14) 1 2(3)(21) 1 (5)(21) 1 (3)(14)

14}
d
d
c
t
} 5 413

}
d
d
c
t
} 5 29.5 knots

The ships are moving apart at a rate of 29.5 knots.

37. }
d
d
y
t
} 5 }

d
d
y
x
} }

d
d
x
t
} 5 210(1 1 x2)22(2x)}

d
d
x
t
} 5 2}

(1 1

20x
x2)2} }

d
d
x
t
}

Since }
d
d
x
t
} 5 3 cm/sec, we have

}
d
d
y
t
} 5 2}

(1 1

60x
x2)2} cm/sec.

(a) }
d
d
y
t
} 5 2}

[1 1

60(
(
2

2

2
2
)
)2]2} 5 }

1
5
2
2
0

} 5 }
2
5
4
} cm/sec

(b) }
d
d
y
t
} 5 2}

(1
6
1

0(
0
0)

2)2} 5 0 cm/sec

(c) }
d
d
y
t
} 5 2}

(1
6
1

0(2
2
0
0
)
2)2} < 20.00746 cm/sec

a

A

O Bb

c

120°

b}
d
d
a
t
} 2 a}

d
d
b
t
}

}}
a2 1 b2

b}
d
d
a
t
} 2 a}

d
d
b
t
}

}}
b2

1
}

1 1 1}
a
b

}2
2
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38. }
d
d
y
t
} 5 }

d
d

y
x
} }

d
d
x
t
} 5 (3x2 2 4)}

d
d
x
t
}

Since }
d
d
x
t
} 5 22 cm/sec, we have }

d
d
y
t
} 5 8 2 6x2 cm/sec.

(a) }
d
d
y
t
} 5 8 2 6(23)2 5 246 cm/sec

(b) }
d
d
y
t
} 5 8 2 6(1)2 5 2 cm/sec

(c) }
d
d
y
t
} 5 8 2 6(4)2 5 288 cm/sec

39. (a) The point being plotted would correspond to a point on
the edge of the wheel as the wheel turns.

(b) One possible answer is u 5 16pt, where t is in seconds.
(An arbitrary constant may be added to this expression,
and we have assumed counterclockwise motion.)

(c) In general, assuming counterclockwise motion:

}
d
d
x
t
} 5 22 sin u}

d
d
u

t
} 5 22(sin u)(16p) 5 232p sin u

}
d
d
y
t
} 5 2 cos u}

d
d
u

t
} 5 2(cos u)(16p) 5 32p cos u

At u 5 }
p

4
}:

}
d
d
x
t
} 5 232p sin }

p

4
} 5 216p(Ï2w) < 271.086 ft/sec

}
d
d
y
t
} 5 32p cos }

p

4
} 5 16p(Ï2w) < 71.086 ft/sec

At u 5 }
p

2
}:

}
d
d
x
t
} 5 232p sin }

p

2
} 5 232p < 2100.531 ft/sec

}
d
d
y
t
} 5 32p cos }

p

2
} 5 0 ft/sec

At u 5 p:

}
d
d
x
t
} 5 232p sin p 5 0 ft/sec

}
d
d
y
t
} 5 32p cos p 5 232p < 2100.531 ft/sec

40. (a) One possible answer:
x 5 30 cos u, y 5 40 1 30 sin u

(b) Since the ferris wheel makes one revolution every 
10 sec, we may let u 5 0.2pt and we may write 
x 5 30 cos 0.2pt, y 5 40 1 30 sin 0.2pt. 
(This assumes that the ferris wheel revolves 
counterclockwise.)

In general:

}
d
d
x
t
} 5 230(sin 0.2pt)(0.2p) 5 26p sin 0.2pt

}
d
d
y
t
} 5 30(cos 0.2pt)(0.2p) 5 6p cos 0.2pt

At t 5 5:

}
d
d
x
t
} 5 26p sin p 5 0 ft/sec

}
d
d
y
t
} 5 6p cos p 5 6p(21) < 218.850 ft/sec

At t 5 8:

}
d
d
x
t
} 5 26p sin 1.6p < 17.927 ft/sec

}
d
d
y
t
} 5 6p cos 1.6p < 5.825 ft/sec

41. (a) }
d
d
y
t
} 5 }

d
d
t
}(uv) 5 u}

d
d
v
t
} 1 v}

d
d
u
t
}

5 u(0.05v) 1 v(0.04u)

5 0.09uv

5 0.09y

Since }
d
d
y
t
} 5 0.09y, the rate of growth of total production

is 9% per year.

(b) }
d
d
y
t
} 5 }

d
d
t
}(uv) 5 u}

d
d
v
t
} 1 v}

d
d
u
t
}

5 u(0.03v) 1 v(20.02u)
5 0.01uv
5 0.01y

The total production is increasing at the rate of 1% per
year.

■ Chapter 4 Review (pp. 242–245)

1. y 5 xÏ2w 2w xw

y9 5 x1}
2Ï2w

1

2w xw
}2(21) 1 (Ï2w 2w xw)(1)

5 }
2x

2

1

Ï
2

2w
(

2w
2 2

xw
x)

}

5 }
2Ï
4 2

2w 2w
3x

xw
}

The first derivative has a zero at }
4
3

}.

Critical point value: x 5 }
4
3

} y 5 }
4Ï

9
6w

} < 1.09

Endpoint values: x 5 22 y 5 24

x 5 2 y 5 0

The global maximum value is }
4Ï

9
6w

} at x 5 }
4
3

}, and the global

minimum value is 24 at x 5 22.

2. Since y is a cubic function with a positive leading 

coefficient, we have lim
x→2`

y 5 2` and lim
x→`

y 5 `. There are

no global extrema.

3. y9 5 (x2)(e1/x2
)(22x23) 1 (e1/x2

)(2x)

5 2e1/x212}
1
x

} 1 x2
5

y0 5 }
d
d
x
}[2e1/x2

(2x21 1 x)]

5 (2e1/x2
)(x22 1 1) 1 (2x21 1 x)(2e1/x2

)(22x23)

5 (2e1/x2
)(x22 1 1 1 2x24 2 2x22)

5

5
2e1/x2

[(x2 2 0.5)2 1 1.75]
}}}

x4

2e1/x2
(x4 2 x2 1 2)

}}
x4

2e1/x2
(x 2 1)(x 1 1)

}}}
x
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Intervals x , 21 21 , x , 0 0 , x , 1

Sign of y9 2 1 2

Behavior of y Decreasing Increasing Decreasing Increasing

1

x . 1



The second derivative is always positive (where defined), so
the function is concave up for all x Þ 0.
Graphical support:

[24, 4] by [21, 5]

(a) [21, 0) and [1, `)

(b) (2`, 21] and (0, 1]

(c) (2`, 0) and (0, `)

(d) None

(e) Local (and absolute) minima at (1, e) and (21, e)

(f) None

4. Note that the domain of the function is [22, 2].

y9 5 x1}
2Ï4w

1

2w xw2w
}2(22x) 1 (Ï4w 2w xw2w)(1)

5 }
2x2

Ï
1

4w
(

2w
4 2

xw2w
x2)

}

5 }
Ï
4

4w
2

2w
2x

xw

2

2w
}

y0 5

5

Note that the values x 5 6Ï6w are not zeros of y0 because
they fall outside of the domain.

Graphical support:

[22.35, 2.35] by [23.5, 3.5]

(a) [2Ï2w, Ï2w]

(b) [22, 2Ï2w] and [Ï2w, 2]

(c) (22, 0)

(d) (0, 2)

(e) Local maxima: (22, 0), (Ï2w, 2)
Local minima: (2, 0), (2Ï2w, 22)
Note that the extrema at x 5 6Ï2w are also absolute
extrema.

(f) (0, 0)

5. y9 5 1 2 2x 2 4x3

Using grapher techniques, the zero of y9 is x < 0.385.

y0 5 22 2 12x2 5 22(1 1 6x2)
The second derivative is always negative so the function is
concave down for all x.

Graphical support:

[24, 4] by [24, 2]

(a) Approximately (2`, 0.385]

(b) Approximately [0.385, `)

(c) None

(d) (2`, `)

(e) Local (and absolute) maximum at < (0.385, 1.215)

(f) None

6. y9 5 ex21 2 1

y0 5 ex21

The second derivative is always positive, so the function is
concave up for all x.

Graphical support:

[24, 4] by [22, 4]

(a) [1, `)

(b) (2`, 1]

(c) (2`, `)

(d) None

(e) Local (and absolute) minimum at (1, 0)

(f) None

2x(x2 2 6)
}}
(4 2 x2)3/2

(Ï4w 2w xw2w)(24x) 2 (4 2 2x2)1}
2Ï4w

1

2w xw2w
}2(22x)

}}}}}
4 2 x2
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Intervals 22 , x , 2Ï2w 2Ï2w , x , Ï2w Ï2w , x , 2

Sign of y9 2 1 2

Behavior of y Decreasing Increasing Decreasing

Intervals 22 , x , 0 0 , x , 2

Sign of y0 1 2

Behavior of y Concave up Concave down

Intervals x , 0.385 0.385 , x

Sign of y9 1 2

Behavior of y Increasing Decreasing

Intervals x , 1 1 , x

Sign of y9 2 1

Behavior of y Decreasing Increasing



7. Note that the domain is (21, 1).

y 5 (1 2 x2)21/4

y9 5 2}
1
4

}(1 2 x2)25/4(22x) 5 }
2(1 2

x
x2)5/4}

y0 5

5

5

The second derivative is always positive, so the function is
concave up on its domain (21, 1).
Graphical support:

[21.3, 1.3] by [21, 3]

(a) [0, 1)

(b) (21, 0]

(c) (21, 1)

(d) None

(e) Local minimum at (0, 1)

(f) None

8. y9 5 5 2}
(
2
x
x
3

3

2

1

1
1
)2}

y0 5 2

5 2

5 }
6
(
x
x

2

3
(x

2

3 1

1)3
2)

}

Graphical support:

[24.7, 4.7] by [23.1, 3.1]

(a) (2`, 2221/3] < (2`, 20.794]

(b) [2221/3, 1) < [20.794, 1) and (1, `)

(c) (2`, 221/3) < (2`, 21.260) and (1, `)

(d) (221/3, 1) < (21.260, 1)

(e) Local maximum at 

12221/3, }
2
3

} ? 221/32 < (20.794, 0.529)

(f) 1221/3, }
1
3

} ? 21/32 < (21.260, 0.420)

9. Note that the domain is [21, 1].

y9 5 2}
Ï1w

1

2w xw2w
}

Since y9 is negative on (21, 1) and y is continuous, y is

decreasing on its domain [21, 1].

y0 5 }
d
d
x
}[2(1 2 x2)21/2]

5 }
1
2

}(1 2 x2)23/2(22x) 5 2}
(1 2

x
x2)3/2}

Graphical support:

[21.175, 1.175] by 32}
p

4
}, }

5

4

p
}4

(a) None

(b) [21, 1]

(c) (21, 0)

(d) (0, 1)

(e) Local (and absolute) maximum at (21, p);
local (and absolute) minimum at (1, 0)

(f) 10, }
p

2
}2

(x3 2 1)(6x2) 2 (2x3 1 1)(6x2)
}}}}

(x3 2 1)3

(x3 2 1)2(6x2) 2 (2x3 1 1)(2)(x3 2 1)(3x2)
}}}}}

(x3 2 1)4

(x3 2 1)(1) 2 (x)(3x2)
}}}

(x3 2 1)2

3x2 1 2
}}
4(1 2 x2)9/4

(1 2 x2)1/4[2 2 2x2 1 5x2]
}}}

4(1 2 x2)5/2

2(1 2 x2)5/4(1) 2 (x)(2)1}
5
4

}2(1 2 x2)1/4(22x)

}}}}}
4(1 2 x2)5/2
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Intervals 21 , x , 0 0 , x , 1

Sign of y9 2 1

Behavior of y Decreasing Increasing

Intervals x ,2221/3 2221/3 , x , 1 1 , x

Sign of y9 1 2 2

Behavior of y Increasing Decreasing Decreasing

Intervals 21 , x , 0 0 , x , 1

Sign of y0 1 2

Behavior of y Concave up Concave down

Intervals x , 221/3 221/3 , x , 0 1 , x

Sign of y0 1 2 1

Behavior of y Concave up Concave down Concave up

0 , x , 1

2

Concave down



10. This problem can be solved graphically by using NDER to obtain the graphs shown below.
y y9 y0

[24, 4] by [21, 0.3] [24, 4] by [20.4, 0.6] [24, 4] by [20.7, 0.8]

An alternative approach using a combination of algebraic and graphical techniques follows.

Note that the denominator of y is always positive because it is equivalent to (x 1 1)2 1 2.

y9 5

5

y0 5

5

5 }
2
(
x
x

3

2
2

1

1
2
8
x
x
1

2

3
1
)3
2

}

Using graphing techniques, the zeros of 2x3 2 18x 2 12 (and hence of y0) are at 
x < 22.584, x < 20.706, and x < 3.290.

(a) [2Ï3w, Ï3w]

(b) (2`, 2Ï3w] and [Ï3w, `)

(c) Approximately (22.584, 20.706) and (3.290, `)

(d) Approximately (2`, 22.584) and (20.706, 3.290)

(e) Local maximum at 1Ï3w, }
Ï3w

4
2 1
}2

< (1.732, 0.183);

local minimum at 12Ï3w, }
2Ï3w

4
2 1
}2

< (21.732, 20.683)

(f) <(22.584, 20.573), (20.706, 20.338), and 
(3.290, 0.161)

(x2 1 2x 1 3)(22x) 2 2(2x 1 2)(2x2 1 3)
}}}}}

(x2 1 2x 1 3)3

(x2 1 2x 1 3)2(22x) 2 (2x2 1 3)(2)(x2 1 2x 1 3)(2x 1 2)
}}}}}}}

(x2 1 2x 1 3)4

2x2 1 3
}}
(x2 1 2x 1 3)2

(x2 1 2x 1 3)(1) 2 (x)(2x 1 2)
}}}}

(x2 1 2x 1 3)2
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Intervals (2`, 22.584) (22.584, 20.706) (20.706, 3.290)

Sign of y0 2 1 2

Behavior of y Concave down Concave up Concave down Concave up

1

(3.290, `)

Intervals x , 2Ï3w 2Ï3w , x , Ï3w Ï3w , x

Sign of y9 2 1 2

Behavior of y Decreasing Increasing Decreasing



11. For x . 0, y9 5 }
d
d
x
} ln x 5 }

1
x

}

For x , 0: y9 5 }
d
d
x
} ln (2x) 5 }

2

1
x

}(21) 5 }
1
x

}

Thus y9 5 }
1
x

} for all x in the domain.

y0 5 2x22

The second derivative is always negative, so the function is concave down on 
each open interval of its domain.

Graphical support:

[22.35, 2.35] by [23, 1.5]

(a) (0, 2]

(b) [22, 0)

(c) None

(d) (22, 0) and (0, 2)

(e) Local (and absolute) maxima at (22, ln 2) and (2, ln 2)

(f) None

12. y9 5 3 cos 3x 2 4 sin 4x

Using graphing techniques, the zeros of y9 in the domain 

0 # x # 2p are x < 0.176, x < 0.994, x 5 }
p

2
} < 1.57,

x < 2.148, and x < 2.965, x < 3.834, x 5 }
3
2
p
}, x < 5.591
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Intervals (22, 0) (0, 2)

Sign of y9 2 1

Behavior of y Decreasing Increasing

Intervals 0 , x , 0.176 0.176 , x , 0.994 0.994 , x , }
p

2
}

Sign of y9 1 2 1

Behavior of y Increasing Decreasing Increasing Decreasing

2

}
p

2
} , x , 2.148

Increasing

1

2.148 , x , 2.965

Intervals 2.965 , x , 3.834 3.834 , x , }
3
2
p
} }

3
2
p
} , x , 5.591

Sign of y9 2 1 2

Behavior of y Decreasing Increasing Decreasing Increasing

1

5.591 , x , 2p



y0 5 29 sin 3x 2 16 cos 4x
Using graphing techniques, the zeros of y0 in the domain 
0 # x # 2p are x < 0.542, x < 1.266, x < 1.876,
x < 2.600, x < 3.425, x < 4.281, x < 5.144 and x < 6.000.

Graphical support:

32}
p

4
}, }

9

4

p
}4 by [22.5, 2.5]

(a) Approximately [0, 0.176], 30.994, }
p

2
}4, [2.148, 2.965], 33.834, }

3
2
p
}4, and 35.591, 2p4

(b) Approximately [0.176, 0.994], 3}
p

2
}, 2.1484, [2.965, 3.834], and 3}

3
2
p
}, 5.5914

(c) Approximately (0.542, 1.266), (1.876, 2.600), (3.425, 4.281), and (5.144, 6.000)

(d) Approximately (0, 0.542), (1.266, 1.876), (2.600, 3.425), (4.281, 5.144), and (6.000, 2p)

(e) Local maxima at <(0.176, 1.266), 1}
p

2
}, 02

and (2.965, 1.266), 1}
3
2
p
}, 22, and (2p,1);

local minima at <(0, 1), (0.994, 20.513),

(2.148, 20.513), (3.834, 21.806),

and (5.591, 21.806)

Note that the local extrema at x < 3.834, x 5 }
3
2
p
},

and x < 5.591 are also absolute extrema.

(f) <(0.542, 0.437), (1.266, 20.267), (1.876, 20.267), (2.600, 0.437), (3.425, 20.329), (4.281, 0.120),
(5.144, 0.120), and (6.000, 20.329)
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Intervals 0 , x , 0.542 0.542 , x , 1.266 1.266 , x , 1.876

Sign of y0 2 1 2

Behavior of y Concave down Concave up Concave down Concave up

1

1.876 , x , 2.600

Concave down

2

2.600 , x , 3.425

Intervals 3.425 , x , 4.281 4.281 , x , 5.144 5.144 , x , 6.000

Sign of y0 1 2 1

Behavior of y Concave up Concave down Concave up Concave down

2

6.000 , x , 2p



13. y9 5 h

y0 5 h

Graphical support:

[24, 4] by [22, 4]

(a) 10, }
Ï

2

3w
}4

(b) (2`, 0] and 3}
Ï

2

3w
}, `2

(c) (2`, 0)

(d) (0, `)

(e) Local maximum at 1}
Ï

2

3w
}, }

3Ï
16

3w
}2 < (1.155, 3.079)

(f) None. Note that there is no point of inflection at x 5 0 because the derivative is undefined and no tangent line exists 
at this point.

14. y9 5 25x4 1 7x2 1 10x 1 4
Using graphing techniques, the zeros of y9 are x < 20.578 and x < 1.692.

y0 5 220x3 1 14x 1 10
Using graphing techniques, the zero of y0 is x < 1.079.

Graphical support:

[24, 4] by [210, 25]

x , 0
x . 0

e2x,
26x,

x , 0
x . 0

2e2x,
4 2 3x2,
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Intervals x , 0 0 , x , }
Ï

2

3w
} }

Ï
2

3w
} , x

Sign of y9 2 1 2

Behavior of y Decreasing Increasing Decreasing

Intervals x , 0 0 , x

Sign of y0 1 2

Behavior of y Concave up Concave down

Intervals x , 20.578 20.578 , x , 1.692 1.692 , x

Sign of y9 2 1 2

Behavior of y Decreasing Increasing Decreasing

Intervals x , 1.079 1.079 , x

Sign of y0 1 2

Behavior of y Concave up Concave down



(a) Approximately [20.578, 1.692]

(b) Approximately (2`, 20.578] and [1.692, `)

(c) Approximately (2`, 1.079)

(d) Approximately (1.079, `)

(e) Local maximum at < (1.692, 20.517);local minimum at < (20.578, 0.972)

(f) <(1.079, 13.601)

15. y 5 2x4/5 2 x9/5

y9 5 }
8
5

}x21/5 2 }
9
5

}x4/5 5 }
8

5

2

Ï
5

9

xw
x

}

y0 5 2}
2
8
5
}x26/5 2 }

3
2

6
5
}x21/5 5 2}

4(
2
2
5
1

x6/
9
5
x)

}

Graphical support:

[24, 4] by [23, 3]

(a) 30, }
8
9

}4
(b) (2`, 0] and 3}

8
9

}, `2
(c) 12`, 2}

2
9

}2
(d) 12}

2
9

}, 02 and (0, `)

(e) Local maximum at 1}
8
9

}, }
1
9
0
} ? 1}

8
9

}2
4/5

2 < (0.889, 1.011);

local minimum at (0, 0)

(f) 12}
2
9

}, }
2
9
0
} ? 12}

2
9

}2
4/5

2 < 12}
2
9

}, 0.6672
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Intervals x , 0 0 , x , }
8
9

} }
8
9

} , x

Sign of y9 2 1 2

Behavior of y Decreasing Increasing Decreasing

Intervals x , 2}
2
9

} 2}
2
9

} , x , 0 0 , x

Sign of y0 1 2 2

Behavior of y Concave up Concave down Concave down



16. We use a combination of analytic and grapher techniques to solve this problem. Depending on the viewing windows chosen,

graphs obtained using NDER may exhibit strange behavior near x 5 2 because, for example, NDER (y, 2) < 5,000,000 while y9

is actually undefined at x 5 2. The graph of y 5}
5 2 4x

x
1

2

4
2
x2 2 x3
} is shown below.

[25.875, 5.875] by [250, 30]

y9 5

5

The graph of y9 is shown below.

[25.875, 5.875] by [250, 30]

The zero of y9 is x < 0.215.

y0 5

5

5

The graph of y0 is shown below.

[25.875, 5.875] by [220, 20]

The zero of x3 2 6x2 1 12x 2 13 
(and hence of y0) is x < 3.710.

(a) Approximately (2`, 0.215]

(b) Approximately [0.215, 2) and (2, `)

(c) Approximately (2, 3.710)

(d) (2`, 2) and approximately (3.710, `)

(e) Local maximum at < (0.215, 22.417)

(f) <(3.710, 23.420)

22(x3 2 6x2 1 12x 2 13)
}}}

(x 2 2)3

(x 2 2)(26x2 1 20x 2 16) 2 2(22x3 1 10x2 2 16x 1 3)
}}}}}}

(x 2 2)3

(x 2 2)2(26x2 1 20x 2 16) 2 (22x3 1 10x2 2 16x 1 3)(2)(x 2 2)
}}}}}}}

(x 2 2)4

22x3 1 10x2 2 16x 1 3
}}}

(x 2 2)2

(x 2 2)(24 1 8x 2 3x2) 2 (5 2 4x 1 4x2 2 x3)(1)
}}}}}}

(x 2 2)2
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Intervals x , 0.215 0.215 , x , 2 2 , x

Sign of y9 1 2 2

Behavior of y Increasing Decreasing Decreasing

Intervals x , 2 2 , x , 3.710 3.710 , x

Sign of y0 2 1 2

Behavior of y Concave down Concave up Concave down



17. y9 5 6(x 1 1)(x 2 2)2

y0 5 6(x 1 1)(2)(x 2 2) 1 6(x 2 2)2(1)
5 6(x 2 2)[(2x 1 2) 1 (x 2 2)]
5 18x(x 2 2)

(a) There are no local maxima.

(b) There is a local (and absolute) minimum at x 5 21.

(c) There are points of inflection at x 5 0 and at x 5 2.

18. y9 5 6(x 1 1)(x 2 2)

y0 5 }
d
d
x
}6(x2 2 x 2 2) 5 6(2x 2 1)

(a) There is a local maximum at x 5 21.

(b) There is a local minimum at x 5 2.

(c) There is a point of inflection at x 5 }
1
2

}.

19. Since }
d
d
x
}12}

1
4

}x24 2 e2x2 5 x25 1 e2x,

f (x) 5 2}
1
4

}x24 2 e2x 1 C.

20. Since }
d
d
x
} sec x 5 sec x tan x, f (x) 5 sec x 1 C.

21. Since }
d
d
x
}12 ln x 1 }

1
3

}x3 1 x2 5 }
2
x

} 1 x2 1 1,

f (x) 5 2 ln x 1 }
1
3

}x3 1 x 1 C.

22. Since }
d
d
x
}1}

2
3

}x3/2 1 2x1/22 5 Ïxw 1 }
Ï
1

xw
},

f (x) 5 }
2
3

}x3/2 1 2x1/2 1 C.

23. f (x) 5 2cos x 1 sin x 1 C
f (p) 5 3

1 1 0 1 C 5 3
C 5 2

f (x) 5 2cos x 1 sin x 1 2

24. f (x) 5 }
3
4

}x4/3 1 }
1
3

}x3 1 }
1
2

}x2 1 x 1 C

f (1) 5 0

}
3
4

} 1 }
1
3

} 1 }
1
2

} 1 1 1 C 5 0

C 5 2}
3
1
1
2
}

f (x) 5 }
3
4

}x4/3 1 }
1
3

}x3 1 }
1
2

}x2 1 x 2 }
3
1
1
2
}

25. v(t) 5 s9(t) 5 9.8t 1 5
s(t) 5 4.9t2 1 5t 1 C
s(0) 5 10

C 5 10
s(t) 5 4.9t2 1 5t 1 10

26. a(t) 5 v9(t) 5 32
v(t) 5 32t 1 C1
v(0) 5 20

C1 5 20

v(t) 5 s9(t) 5 32t 1 20
s(t) 5 16t2 1 20t 1 C2
s(0) 5 5

C2 5 5
s(t) 5 16t2 1 20t 1 5

27. f (x) 5 tan x

f 9(x) 5 sec2 x

L(x) 5 f 12}
p

4
}2 1 f 912}

p

4
}23x 2 12}

p

4
}24

5 tan 12}
p

4
}2 1 sec2 12}

p

4
}21x 1 }

p

4
}2

5 21 1 21x 1 }
p

4
}2

5 2x 1 }
p

2
} 2 1

28. f (x) 5 sec x

f 9(x) 5 sec x tan x

L(x) 5 f 1}
p

4
}2 1 f 91}

p

4
}21x 2 }

p

4
}2

5 sec 1}
p

4
}2 1 sec 1}

p

4
}2 tan 1}

p

4
}21x 2 }

p

4
}2

5 Ï2w 1 Ï2w(1)1x 2 }
p

4
}2

5 Ï2wx 2 }
pÏ

4
2w

} 1 Ï2w

29. f (x) 5 }
1 1

1
tan x
}

f 9(x)5 2(1 1 tan x)22(sec2 x)

5 2}
cos2 x(1

1
1 tan x)2}

5 2}
(cos x 1

1
sin x)2}

L(x) 5 f (0) 1 f 9(0)(x 2 0)

5 1 2 1(x 2 0)

5 2x 1 1
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Intervals x , 21 21 , x , 2 2 , x

Sign of y9 2 1 1

Behavior of y Decreasing Increasing Increasing

Intervals x , 0 0 , x , 2 2 , x

Sign of y0 1 2 1

Behavior of y Concave up Concave down Concave up

Intervals x , 21 21 , x , 2 2 , x

Sign of y9 1 2 1

Behavior of y Increasing Decreasing Increasing

Intervals x , }
1
2

} }
1
2

} , x

Sign of y0 2 1

Behavior of y Concave down Concave up



30. f (x) 5 ex 1 sin x
f 9(x) 5 ex 1 cos x
L(x) 5 f (0) 1 f 9(0)(x 2 0)

5 1 1 2(x 2 0)
5 2x 1 1

31. The global minimum value of }
1
2

} occurs at x 5 2.

32. (a) The values of y9 and y0 are both negative where the
graph is decreasing and concave down, at T.

(b) The value of y9 is negative and the value of y0 is posi-
tive where the graph is decreasing and concave up, at
P.

33. (a) The function is increasing on the interval (0, 2].

(b) The function is decreasing on the interval [23, 0).

(c) The local extreme values occur only at the endpoints of
the domain. A local maximum value of 1 occurs at 
x 5 23, and a local maximum value of 3 occurs at 
x 5 2.

34. The 24th day

35.

36. (a) We know that f is decreasing on [0, 1] and increasing
on [1, 3], the absolute minimum value occurs at x 5 1
and the absolute maximum value occurs at an endpoint.
Since f (0) 5 0, f (1) 5 22, and f (3) 5 3, the absolute
minimum value is 22 at x 5 1 and the absolute maxi-
mum value is 3 at x 5 3.

(b) The concavity of the graph does not change. There are
no points of inflection.

(c)

37. (a) f (x) is continuous on [0.5, 3] and differentiable on 
(0.5, 3).

(b) f 9(x) 5 (x)1}
1
x

}2 1 (ln x)(1) 5 1 1 ln x

Using a 5 0.5 and b 5 3, we solve as follows.

f 9(c) 5 }
f (3

3
) 2

2

f
0
(
.5
0.5)

}

1 1 ln c 5}
3 ln 3 2

2.
0
5
.5 ln 0.5
}

ln c 5 2 1

ln c 5 0.4 ln(27Ï2w) 2 1

c 5 e21(27Ï2w)0.4

c 5 e21Ï
5

1w4w5w8w < 1.579

(c) The slope of the line is 

m 5 }
f (b

b
) 2

2

f
a
(a)

} 5 0.4 ln (27Ï2w) 5 0.2 ln 1458, and

the line passes through (3, 3 ln 3). Its equation is 

y 5 0.2(ln 1458)(x 2 3) 1 3 ln 3, or approximately 

y 5 1.457x 2 1.075.

(d) The slope of the line is m 5 0.2 ln 1458, and the line

passes through

(c, f (c)) 5 (e21Ï
5

1w4w5w8w, e21Ï
5

1w4w5w8w(21 1 0.2 ln 1458))

< (1.579, 0.722).

Its equation is 

y 5 0.2(ln 1458)(x 2 c) 1 f (c),

y 5 0.2 ln 1458(x 2 e21Ï
5

1w4w5w8w)

1 e21Ï
5

1w4w5w8w(21 1 0.2 ln 1458),

y 5 0.2(ln 1458)x 2 e21Ï
5

1w4w5w8w,

or approximately y 5 1.457x 2 1.579.

38. (a) v(t) 5 s9(t) 5 4 2 6t 2 3t2

(b) a(t) 5 v9(t) 5 26 2 6t

(c) The particle starts at position 3 moving in the positive
direction, but decelerating. At approximately t 5 0.528,
it reaches position 4.128 and changes direction, begin-
ning to move in the negative direction. After that, it
continues to accelerate while moving in the negative
direction.

39. (a) L(x) 5 f (0) 1 f 9(0)(x 2 0)
5 21 1 0(x 2 0) 5 21

(b) f (0.1) < L(0.1) 5 21

(c) Greater than the approximation in (b), since f 9(x) is
actually positive over the interval (0, 0.1) and the 
estimate is based on the derivative being 0.

40. (a) Since }
d
d
y
x
} 5 (x2)(2e2x) 1 (e2x)(2x) 5 (2x 2 x2)e2x,

dy 5 (2x 2 x2)e2x dx.

(b) dy 5 [2(1) 2 (1)2](e21)(0.01)
5 0.01e21

< 0.00368

ln 1}0.
3
5

3

0.5}2
}}

2.5

y

x

3

–3

–1 431

y

x

2

3–3

–3

y = f(x)
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41. (a) Regression equation y 5}
1 1

2
1
7
7
0
.2
1
8
.7
e
3
20.36x}

[0, 20] by [2300, 2800]

(b) Note that 

y9 5 }
d
d
x
}2701.73(1 1 17.28e20.36x)21

5 22701.73(1 1 17.28e20.36x)22(17.28)(20.36e20.36x)

<

The graph of y9 is shown below.

[0, 20] by [275, 275]

Using graphing techniques, y9 has its maximum at 
x < 7.92. This corresponds to the year 1998 and
represents the inflection point of the logistic curve. The
logistic regression equation predicts that the rate of
increase in debit card transactions will begin to
decrease in 1998, and since y(7.92) < 1351, there are
approximately 1351 million transactions that year.

(c) As x increases, the value of y will increase toward
2701.73. The logistic regression equation predicts a
ceiling of approximately 2702 million transactions per
year.

42. f (x) 5 2 cos x 2 Ï1w 1w xw

f 9(x) 5 22 sin x 2 }
2Ï1w

1

1w xw
}

xn11 5 xn 2 }
f

f

9

(

(

x

x
n

n

)

)
}

5 xn 2

The graph of y 5 f (x) shows that f (x) 5 0 has one solution,
near x 5 1.

[22, 10] by [26, 2]

x1 5 1
x2 < 0.8361848
x3 < 0.8283814
x4 < 0.8283608
x5 < 0.8283608

Solution: x < 0.828361

43. Let t represent time in seconds, where the rocket lifts off at
t 5 0. Since a(t) 5 v9(t) 5 20 m/sec2 and v(0) 5 0 m/sec,
we have v(t) 5 20t, and so v(60) 5 1200 m/sec. The speed
after 1 minute (60 seconds) will be 1200 m/sec.

44. Let t represent time in seconds, where the rock is blasted
upward at t 5 0. Since a(t) 5 v9(t) 5 23.72 m/sec2 and
v(0) 5 93 m/sec, we have v(t) 5 23.72t 1 93. Since 
s9(t) 5 23.72t 1 93 and s(0) 5 0, we have 
s(t) 5 21.86t2 1 93t. Solving v(t) 5 0, we find that the
rock attains its maximum height at t 5 25 sec and its height
at that time is s(25) 5 1162.5 m.

45. Note that s 5 100 2 2r and the sector area is given by 

A 5 pr21}
2p

s
r

}2 5 }
1
2

}rs 5 }
1
2

}r(100 2 2r) 5 50r 2 r2. To find

the domain of A(r) 5 50r 2 r2, note that r . 0 and 

0 , s , 2pr, which gives 12.1 < }
p

5
1

0
1

} , r , 50. Since 

A9(r) 5 50 2 2r, the critical point occurs at r 5 25. This

value is in the domain and corresponds to the maximum

area because A0(r) 5 22, which is negative for all r.

The greatest area is attained when r 5 25 ft and s 5 50 ft.

46.

For 0 , x , Ï2w7w, the triangle with vertices at (0, 0) and

(6x, 27 2 x2) has an area given by

A(x) 5 }
1
2

}(2x)(27 2 x2) 5 27x 2 x3. Since 

A9 5 27 2 3x2 5 3(3 2 x)(3 1 x) and A0 5 26x, the

critical point in the interval (0, Ï2w7w) occurs at x 5 3 and

corresponds to the maximum area because A0(x) is negative

in this interval. The largest possible area is 

A(3) 5 54 square units.

y

x

27

4–4

(x, 27 – x2)

2 cos xn 2 Ï1w 1w xwnw}}}

22 sin xn 2 }
2Ï1w

1

1w xwnw
}

16,806.9e20.36x

}}}
(1 1 17.28e20.36x)2
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47. If the dimensions are x ft by x ft by h ft, then the total

amount of steel used is x2 1 4xh ft2. Therefore,

x2 1 4xh 5 108 and so h 5 }
108

4
2

x
x2

}. The volume is given

by V(x) 5 x2h 5 }
108x

4
2 x3
} 5 27x 2 0.25x3. Then 

V9(x) 5 27 2 0.75x2 5 0.75(6 1 x)(6 2 x) and 

V0(x) 5 21.5x. The critical point occurs at x 5 6, and it

corresponds to the maximum volume because V0(x) , 0 for

x . 0. The corresponding height is }
108

4(
2

6)
62

} 5 3 ft. The

base measures 6 ft by 6 ft, and the height is 3 ft.

48. If the dimensions are x ft by x ft by h ft, then we have

x2h 5 32 and so h 5 }
3
x
2
2}. Neglecting the quarter-inch

thickness of the steel, the area of the steel used is 

A(x) 5 x2 1 4xh 5 x2 1 }
12

x
8

}. We can minimize the weight

of the vat by minimizing this quantity. Now 

A9(x) 5 2x 2 128x22 5 }
x
2
2}(x3 2 43) and 

A0(x) 5 2 1 256x23. The critical point occurs at x 5 4 and

corresponds to the minimum possible area because 

A0(x) . 0 for x . 0. The corresponding height is 

}
3
4
2
2} 5 2 ft. The base should measure 4 ft by 4 ft, and the

height should be 2 ft.

49. We have r2 1 1}
h
2

}2
2

5 3, so r2 5 3 2 }
h
4

2
}. We wish to

minimize the cylinder’s volume 

V 5 pr2h 5 p13 2 }
h
4

2
}2h 5 3ph 2 }

p

4
h3
} for 0 , h , 2Ï3w.

Since }
d
d
V
h
} 5 3p 2 }

3p

4
h2
} 5 }

3
4
p
}(2 1 h)(2 2h) and 

}
d
d

2

h
V
2} 5 2}

3p

2
h

}, the critical point occurs at h 5 2 and it

corresponds to the maximum value because }
d
d

2

h
V
2} , 0 for 

h . 0. The corresponding value of r is !3§ 2§ }
2
4§
2
}§ 5 Ï2w.

The largest possible cylinder has height 2 and radius Ï2w.

50. Note that, from similar cones, }
6
r

} 5 }
12

1
2

2
h

}, so h 5 12 22r.

The volume of the smaller cone is given by 

V 5 }
1
3

}pr2h 5 }
1
3

}pr2(12 2 2r) 5 4pr2 2 }
2
3
p
}r3 for 

0 , r , 6. Then }
d
d
V
r
} 5 8pr 2 2pr2 5 2pr(4 2 r), so the

critical point occurs at r 5 4. This critical point

corresponds to the maximum volume because }
d
d
V
r
} . 0 for 

0 , r , 4 and }
d
d
V
r
} , 0 for 4 , r , 6. The smaller cone has

the largest possible value when r 5 4 ft and h 5 4 ft.

51.

(a) V(x) 5 x(15 2 2x)(5 2 x)

(b, c) Domain: 0 , x , 5

[0, 5] by [220, 70]

The maximum volume is approximately 66.019 in3 and
it occurs when x < 1.962 in.

(d) Note that V(x) 5 2x3 2 25x2 1 75x,

so V9(x) 5 6x2 2 50x 1 75.

Solving V9(x) 5 0, we have

x 5 5 }
50 6

1

Ï
2

7w0w0w
}

5 }
50 6

1
1
2
0Ï7w
} 5 }

25 6

6
5Ï7w
}.

These solutions are approximately x < 1.962 and 
x < 6.371, so the critical point in the appropriate
domain occurs at

x 5 }
25 2

6
5Ï7w
}.

50 6 Ï(2w5w0w)2w 2w 4w(6w)(w7w5w)w
}}}

2(6)

Lid

Base

15 in.

10 in.

x

x

x

x
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52.

For 0 , x , }
5
3
p
}, the area of the rectangle is given by

A(x) 5 (2x)(8 cos 0.3x) 5 16x cos 0.3x.

Then A9(x) 5 16x(20.3 sin 0.3x) 1 16(cos 0.3x)(1) 

5 16(cos 0.3x 2 0.3x sin 0.3x)

Solving A9(x) 5 0 graphically, we find that the critical

point occurs at x < 2.868 and the corresponding area is

approximately 29.925 square units.

53. The cost (in thousands of dollars) is given by 

C(x) 5 40x 1 30(20 2 y) 5 40x 1 600 2 30Ïx2w 2w 1w4w4w.

Then C9(x) 5 40 2 }
2Ïx2w

30

2w 1w4w4w
}(2x) 5 40 2 }

Ïx2w
3

2w
0x

1w4w4w
}.

Solving C9(x) 5 0, we have:

}
Ïx2w

3

2w
0x

1w4w4w
} 5 40

3x 5 4Ïx2w 2w 1w4w4w

9x2 5 16x2 2 2304

2304 5 7x2

Choose the positive solution:

x 5 1}
Ï
48

7w
} < 18.142 mi

y 5 Ïx2w 2w 1w2w2w 5 }
Ï
36

7w
} < 13.607 mi

54. The length of the track is given by 2x 1 2pr, so we have 

2x 1 2pr 5 400 and therefore x 5 200 2 pr. Then the area

of the rectangle is

A(r) 5 2rx

5 2r(200 2 pr)

5 400r 2 2pr2, for 0 , r , }
2
p

00
}.

Therefore, A9(r) 5 400 2 4pr and A0(r) 5 24p, so the

critical point occurs at r 5 }
1
p

00
} m 

and this point corresponds to the maximum rectangle area

because A0(r) , 0 for all r. 

The corresponding value of x is 

x 5 200 2 p1}
1
p

00
}2 5 100 m.

The rectangle will have the largest possible area when 

x 5 100 m and r 5 }
1
p

00
} m.

55. Assume the profit is k dollars per hundred grade B tires and

2k dollars per hundred grade A tires. 

Then the profit is given by

P(x) 5 2kx 1 k ? }
40

5
2

2

1
x
0x

}

5 2k ?

5 2k ? }
2
5
0

2

2

x
x2

}

P9(x) 5 2k ?

5 2k ? }
x2 2

(5
1
2

0x
x
1

)2
20

}

The solutions of P9(x) 5 0 are 

x 5 5 5 6 Ï5w, so the solution in

the appropriate domain is x 5 5 2 Ï5w < 2.76. 

Check the profit for the critical point and endpoints:

Critical point: x < 2.76 P(x) < 11.06k

Endpoints: x 5 0 P(x) 5 8k

x 5 4 P(x) 5 8k

The highest profit is obtained when x < 2.76 and y < 5.53,

which corresponds to 

276 grade A tires and 553 grade B tires.

10 6 Ï(2w1w0w)2w 2w 4w(1w)(w2w0w)w
}}}

2(1)

(5 2 x)(22x) 2 (20 2 x2)(21)
}}}}

(5 2 x)2

(20 2 5x) 1 x(5 2 x)
}}}

5 2 x

y

x

10

2ππ–2π –π

(x, 8 cos 0.3x)
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56. (a) The distance between the particles is ) f (t)) where 

f (t) 5 2cos t 1 cos 1t 1 }
p

4
}2. Then 

f 9(t) 5 2sin t 1 sin 1t 1 }
p

4
}2

Solving f 9(t) 5 0 graphically, we obtain t < 1.178, t < 4.230, and so on.

[0, 2p] by [22, 2]

Alternatively, f 9(t) 5 0 may be solved analytically as follows.

f 9(t) 5 sin 31t 1 }
p

8
}2 2 }

p

8
}4 2 sin 31t 1 }

p

8
}2 1 }

p

8
}4

5 3sin 1t 1 }
p

8
}2 cos }

p

8
} 2 cos 1t 1 }

p

8
}2 sin }

p

8
}4 2 3sin 1t 1 }

p

8
}2 cos }

p

8
} 1 cos 1t 1 }

p

8
}2 sin }

p

8
}4

5 22 sin }
p

8
} cos 1t 1 }

p

8
}2,

so the critical points occur when 

cos 1t 1 }
p

8
}2 5 0, or t 5 }

3
8
p
} 1 kp. At each of these values,

f (t) 5 62 cos }
3
8
p
} < 60.765 units, so the maximum distance between 

the particles is 0.765 units.

(b) Solving cos t 5 cos 1t 1 }
p

4
}2 graphically, we obtain t < 2.749, t < 5.890, and so on.

[0, 2p] by [22, 2]

Alternatively, this problem may be solved analytically as follows.

cos t 5 cos 1t 1 }
p

4
}2

cos 31t 1 }
p

8
}2 2 }

p

8
}4 5 cos 31t 1 }

p

8
}2 1 }

p

8
}4

cos 1t 1 }
p

8
}2 cos }

p

8
} 1 sin 1t 1 }

p

8
}2 sin }

p

8
} 5 cos 1t 1 }

p

8
}2 cos }

p

8
} 2 sin 1t 1 }

p

8
}2 cos }

p

8
}

2 sin 1t 1 }
p

8
}2 sin }

p

8
} 5 0

sin 1t 1 }
p

8
}2 5 0

t 5 }
7
8
p
} 1 kp

The particles collide when t 5 }
7
8
p
} < 2.749 (plus multiples of p if they keep going.)
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57. The dimensions will be x in. by 10 2 2x in. by 16 2 2x in.,
so V(x) 5 x(10 2 2x)(16 2 2x) 5 4x3 2 52x2 1 160x
for 0 , x , 5. 
Then V9(x) 5 12x2 2 104x 1 160 5 4(x 2 2)(3x 2 20), so
the critical point in the correct domain is x 5 2. 
This critical point corresponds to the maximum possible
volume because V9(x) . 0 for 0 , x , 2 
and V9(x) , 0 for 2 , x , 5. The box of largest volume
has a height of 2 in. and a base measuring 
6 in. by 12 in., and its volume is 144 in3.

Graphical support:

[0, 5] by [240, 160]

58. Step 1:
r 5 radius of circle
A 5 area of circle

Step 2:

At the instant in question, }
d
d
r
t
} 5 2}

p

2
} m/sec and r 5 10 m.

Step 3:

We want to find }
d
d
A
t
}.

Step 4:

A 5 pr2

Step 5:

}
d
d
A
t
} 5 2pr}

d
d
r
t
}

Step 6:

}
d
d
A
t
} 5 2p(10)12}

p

2
}2 5 240

The area is changing at the rate of 240 m2/sec.

59. Step 1:
x 5 x-coordinate of particle
y 5 y-coordinate of particle
D 5 distance from origin to particle

Step 2:

At the instant in question, x 5 5 m, y 5 12 m,

}
d
d
x
t
} 5 21 m/sec, and }

d
d
y
t
} 5 25 m/sec.

Step 3:

We want to find }
d
d
D
t
}.

Step 4:

D 5 Ïx2w 1w yw2w

Step 5:

}
d
d
D
t
} 5 }

2Ïx2w
1

1w yw2w
}12x}

d
d
x
t
} 1 2y}

d
d
y
t
}2 5

Step 6:

}
d
d
D
t
} 5 5 25 m/sec

Since }
d
d
D
t
} is negative, the particle is approaching the origin

at the positive rate of 5 m/sec.

60. Step 1:
x 5 edge of length of cube
V 5 volume of cube

Step 2:

At the instant in question,

}
d
d
V
t
} 5 1200 cm3/min and x 5 20 cm.

Step 3:

We want to find }
d
d
x
t
}.

Step 4:

V 5 x3

Step 5:

}
d
d
V
t
} 5 3x2}

d
d
x
t
}

Step 6:

1200 5 3(20)2}
d
d
x
t
}

}
d
d
x
t
} 5 1 cm/min

The edge length is increasing at the rate of 1 cm/min.

(5)(21) 1 (12)(25)
}}}

Ï5w2w1w 1w2w2w

x}
d
d
x
t
} 1 y}

d
d
y
t
}

}}
Ïx2w 1w yw2w
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61. Step 1:
x 5 x-coordinate of point
y 5 y-coordinate of point
D 5 distance from origin to point

Step 2:

At the instant in question, x 5 3 and }
d
d
D
t
} 5 11 units per sec.

Step 3:

We want to find }
d
d
x
t
}.

Step 4:

Since D2 5 x2 1 y2 and y 5 x3/2, we have

D 5 Ïx2w 1w xw3w for x $ 0.

Step 5:

}
d
d
D
t
} 5 }

2Ïx2w
1

1w xw3w
}(2x 1 3x2)}

d
d
x
t
}

5 }
2

2

x

x

Ï
1

1w
3

1w
x2

xw
} }

d
d
x
t
} 5 }

2Ï
3x

1w
1

1w
2

xw
} }

d
d
x
t
}

Step 6:

11 5 }
3(

2

3

Ï
) 1

4w
2

} }
d
d
x
t
}

}
d
d
x
t
} 5 4 units per sec

62. (a) Since }
h
r

} 5 }
1
4
0
}, we may write h 5 }

5
2
r
} or r 5 }

2
5
h
}.

(b) Step 1:
h 5 depth of water in tank
r 5 radius of surface of water
V 5 volume of water in tank

Step 2:

At the instant in question,

}
d
d
V
t
} 5 25 ft3/min and h 5 6 ft.

Step 3:

We want to find 2}
d
d
h
t
}.

Step 4:

V 5 }
1
3

}pr2h 5 }
7
4
5
}ph3

Step 5:

}
d
d
V
t
} 5 }

2
4
5
}ph2}

d
d
h
t
}

Step 6:

25 5 }
2
4
5
}p(6)2}

d
d
h
t
}

}
d
d
h
t
} 5 2}

1
1
4
2
4
5
p

} < 20.276 ft/min

Since }
d
d
h
t
} is negative, the water level is dropping at the

positive rate of <0.276 ft/min.

63. Step 1:
r 5 radius of outer layer of cable on the spool
u 5 clockwise angle turned by spool
s 5 length of cable that has been unwound

Step 2:

At the instant in question, }
d
d
s
t
} 5 6 ft/sec and r 5 1.2 ft

Step 3:

We want to find }
d
d
u

t
}.

Step 4:

s 5 ru

Step 5:

Since r is essentially constant, }
d
d
s
t
} 5 r}

d
d
u

t
}.

Step 6:

6 5 1.2}
d
d
u

t
}

}
d
d
u

t
} 5 5 radians/sec

The spool is turning at the rate of 5 radians per second.

64. a(t) 5 v9(t) 5 2g 5 232 ft/sec2

Since v(0) 5 32 ft/sec, v(t) 5 s9(t) 5 232t 1 32.
Since s(0) 5 217 ft, s(t) 5 216t2 1 32t 2 17.
The shovelful of dirt reaches its maximum height when 
v(t) 5 0, at t 5 1 sec. Since s(1) 5 21, the shovelful of dirt
is still below ground level at this time. There was not
enough speed to get the dirt out of the hole. Duck!

65. We have V 5 }
1
3

}pr2h, so }
d
d
V
r
} 5 }

2
3

}prh and dV 5 }
2
3

}prh dr.

When the radius changes from a to a 1 dr, the volume

change is approximately dV 5 }
2
3

}pah dr.

66. (a) Let x 5 edge of length of cube and S 5 surface area of

cube. Then S 5 6x2, which means }
d
d
S
x
} 5 12x and 

dS 5 12x dx. We want )dS) # 0.02S, which gives 

)12x dx) # 0.02(6x2) or )dx) # 0.01x. The edge should

be measured with an error of no more than 1%.

(b) Let V 5 volume of cube. Then V 5 x3, which means

}
d
d
V
x
} 5 3x2 and dV 5 3x2 dx. We have )dx) # 0.01x,

which means )3x2 dx) # 3x2(0.01x) 5 0.03V,

so )dV) # 0.03V. The volume calculation will be

accurate to within approximately 3% of the correct

volume.
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67. Let C 5 circumference, r 5 radius, S 5 surface area, and V 5 volume.

(a) Since C 5 2pr, we have }
d
d
C
r
} 5 2p and so dC 5 2p dr.

Therefore, )}dCC}) 5 )}22
p

p

d
r
r

}) 5 )}drr}) , }
0
1
.
0
4

c
c
m
m

} 5 0.04 The calculated radius will be within approximately 4% of the correct

radius.

(b) Since S 5 4pr2, we have }
d
d
S
r
} 5 8pr and so 

dS 5 8pr dr. Therefore, )}dSS}) 5 )}84pprrd2r})
5 )}2 r

dr
}) # 2(0.04) 5 0.08. The calculated surface area will be within approximately 8% of the correct surface area.

(c) Since V 5 }
4
3

}pr3, we have }
d
d
V
r
} 5 4pr2 and so 

dV 5 4pr2 dr. Therefore )}dVV}) 5 ) ) 5 )}3 r
dr
}) # 3(0.04) 5 0.12. 

The calculated volume will be within approximately 12% of the correct volume.

68. By similar triangles, we have }
a
6

} 5 }
a 1

h
20

}, which gives ah 5 6a 1 120, or h 5 6 1 120a21. The height of the lamp post is

approximately 6 1 120(15)21 5 14 ft. The estimated error in measuring a was )da) # 1 in. 5 }
1
1
2
} ft. Since }

d
d
h
a
} 5 2120a22, we

have )dh) 5 )2120a22 da) # 120(15)221}
1
1
2
}2 5 }

4
2
5
} ft, so the estimated possible error is 6}

4
2
5
} ft or 6}

1
8
5
} in.

69. }
d
d

y
x
} 5 2 sin x cos x 2 3. Since sin x and cos x are both between 1 and 21, the value of 2 sin x cos x is never greater than 2.

Therefore, }
d
d

y
x
} # 2 2 3 5 21 for all values of x. 

Since }
d
d

y
x
} is always negative, the function decreases on every interval.

4pr2 dr
}

}
4
3

}pr3
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