80. Useimplicit differentiation.
-y =1

d d _d
&(XZ) - &(yz) = &(1)

2X—2yy' =0
y’ = & = Z
2y y
p—d X
y'= dx y
_ W@ = Ry
y2
X
)
-
y2 — X2
-
=1
y3
(since the given equation isx? — y? = 1)
2
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Chapter 4

Applications of Derivatives

m Section 4.1 Extreme Values of Functions
(pp. 177- 185)

Exploration 1 Finding Extreme Values

1. From the graph we can see that there are three critical
points: x = —1, 0, 1.
Critical point values: f(—1) = 0.5, f(0) = 0, f(1) = 0.5
Endpoint values: f(—2) = 0.4, f(2) = 0.4
Thus f has absolute maximum value of 0.5 at x = —1 and
x = 1, absolute minimum value of 0 at x = 0, and local
minimum valueof 0.4at x = —2and x = 2.

[72v 2] by [7lv l]
2. The graph of f" haszerosat x = —1 and x = 1 where the
graph of f has local extreme values. The graph of f’ is not
defined at x = 0, another extreme value of the graph of f.

[-2.2]by[-11]

. : d X -
3. Using the chain rule and &(\x\) — K, wefind

o
df _ X 1-%

dx  x  (C+ 1%
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Quick Review 4.1

1

10.

11.

"X = —s A nx=
.g'(¥) = —sin(Inx) dXlnx

1 d -1
f/(x) = L9y =
W vas o v
) = %x*”“
=320 12=—(9-x) 3. L9
dx dx
(0 22 oy 2X
= -0 -x)(—2¢ = @ — x))F?

) = %(x2 — 1)‘”3 = _%(XZ _ 1)—4/3 . 7()(2 _

_ 1.2 —4/3 _ —2X
= —2(x2—-1 N I S
3(X )~ (2%) 302 — )™
’ 1 d 2 2X
] = 92 = 2
9’ X2+ 1 dx(x ) X2+ 1

_sin(Inx)

d
() = e® . —2x = 2e*
X =e dXX e

d

Ch) = delnx= 9y g

dx dx

.Asx - 37,V9—x% _. 0. Therefore, lim f(x) = .
X3

Asx - —3%,V9 —x* -, 0", Therefore, lim f(x) = .

X-—3
d — —
(a) &(x3 -2 =32-2
f'()=31)°-2=1
(b) %(x +2)=1
f'3) =1
(c) Left-hand derivative:

_ 3 _ _
lim f@+N @ _ o [@+h°—22+h)] -4
h-0" h h-0" h
h3 + 6h% + 10h
h

=lim
h-0"

= lim (h?+ 6h + 10)
h-0"

=10

Right-hand derivative:

lim @+ @ _ o [@+h)+2 -4
h-0* h h-0*

. h
=lim —
h-o* h

=lim 1
h-0"

=1
Since the left- and right-hand derivatives are not equal,
f'(2) is undefined.
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12.

(&) Thedomainisx # 2. (Seethe solution for 11.(c)).
a2 -2, x<2
(b) £'09 = {1, =

Section 4.1 Exercises

1

10.

11.

12.

13.

Maximum at X = b, minimum at x = C,,

The Extreme Value Theorem applies becausef is
continuous on [a, b], so both the maximum and minimum
exist.

. Maximum at X = ¢, minimum at X = b;

The Extreme Value Theorem applies becausef is
continuous on [a, b], so both the maximum and minimum
exist.

. Maximum at X = ¢, no minimum;

The Extreme Value Theorem does not apply, because the
function is not defined on a closed interval.

. No maximum, no minimum;

The Extreme Value Theorem does not apply, because the
function is not continuous or defined on a closed interval.

. Maximum at X = ¢, minimum at X = g;

The Extreme Value Theorem does not apply, because the
function is not continuous.

. Maximum at X = a, minimum at X = ¢;

The Extreme Value Theorem does not apply since the
function is not continuous.

. Local minimum at (—1, 0), local maximum at (1, 0)
. Minima at (—2, 0) and (2, 0), maximum at (0, 2)
. Maximum at (0, 5) Note that there is no minimum since the

endpoint (2, 0) is excluded from the graph.

Local maximum at (—3, 0), local minimum at (2, 0),
maximum at (1, 2), minimum at (0, —1)

1

The first derivative f'(x) = ez + % hasazeroat x = 1.

Critical pointvalue: f(1) =1+In1=1

Endpoint values: f(0.5) =2 + In 0.5 = 1.307
f(4) = % +1n4~ 1636

Maximum valueis% +Indax=4

minimum valueislat x = 1;

local maximumat(%, 2—1In 2)

The first derivative g'(x) = —e™* has no zeros, so we need
only consider the endpoints.

o-D=elP=e gl=e'=

o~

Maximum valueiseat x = —1;

minimum valueisé ax=1

Thefirst derivative h'(x) = ?11 has no zeros, so we need

only consider the endpoints.

h =In1=0 h(3 =1In4
Maximum valueisln 4 at x = 3;
minimum valueisO at x = 0.

14.

15.

16.

17.

18.

The first derivative k’(x) = —2xe % has a zero at x = 0.
Since the domain has no endpoints, any extreme value must
occur at X = 0. Since k(0) = e ®=1andlim k(x) = 0,

X *+oo

the maximum valueis 1 at x = 0.

The first derivative f'(x) = cos (x + %) has zeros at

x=T =27
4 4
Critical point values: x :% f(x) =1
=57 -
X = 7 f(x) 1
Endpoint values: x=0 f(x) = 1
. V2
_Im _
X = 1 fx)=0
Maximumvalueislatx:%;
minimumvalueis—latx=57”;

local minimum at <O, %)

local maximum at (7777 O)

The first derivative g’'(x) = sec x tan x has zeros at x = 0
and X = 7r and is undefined at x = % Since g(x) = sec xis
also undefined at x = g the critical points occur only at
x=0andx = .

x=0
X=1

Critical point values: gx) =1

gx) =-1

Since the range of g(x) is (—%, —1] U [1, =), these values
must be alocal minimum and local maximum, respectively.
Local minimum at (0, 1); local maximum at (7, —1)

The first derivative f'(x) = %x’% is never zero but is

undefined at x = 0.

Critical pointvaluee x=0 f(x)=0
Endpoint value: x= -3 f(x) = (-3)%°
=3~ 1552

Sincef(x) > Ofor x # 0, the critical pointat x = 0isa
local minimum, and since f(x) = (—3)?°for -3 = x < 1,
the endpoint value at x = —3 is a global maximum.
Maximum valueis 3%° at x = —3;

minimum valueis0 at x = 0.

Thefirst derivative f'(x) = gx‘% is never zero but is
undefined at x = 0.

Critical pointvauex=0 f(xX)=0

Endpoint value  x=3  f(x) = 3¥° ~ 1.933
Sincef(x) < 0forx < 0andf(x) > 0for x> 0, the

critical point is not alocal minimum or maximum. The
maximum value is 3%° at x = 3.



19.

20.

21.

22.

23.

Hiniraura
n=

L =1
[-2,6] by [-2 4]
Minimum valueislat x = 2.

/\/

Hazirauml
%= -B164973

[-6,6] by [-2,7]

‘*=C.0BBEGZ1

To find the exact values, notethat y' = 3x® — 2, which is
zerowhen x = i\/%. Local maximum at
(f\/%, 4+ 4%9/6) =~ (—0.816, 5.089); local minimum at

( \/% 4- 47\/6) ~ (0.816, 2.911)

Hiniriur
n=1.3732333%

-6, 6] by [—5, 20]

¥=-1.E1BE18

To find the exact values, note that
y' = 3x%+ 2x — 8 = (3x — 4)(x + 2), which is zero when

X=—-20rx= i Local maximum at (—2, 17);
4 _ﬂ)

local minimum at (=,
3 27

/

I(_J

[—6,6] by [—4, 4]

Note that y’ = 3x?> — 6x + 3 = 3(x — 1)?, which is zero at
x = 1. The graph shows that the function assumes lower
values to the left and higher values to the right of this point,
so the function has no local or global extreme values.

aNVe

[-4,4by[-24]
Minimum valueisOatx= —landat x = 1.

24.

25.

26.

27.

28.

29.
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L
L mi

[-47,47) by [-3.1, 3.1]

To confirm that there are no “hidden” extrema, note that
, - -2
Y= 0= D729 = (7]
x = 0 and is undefined only where y is undefined. Thereis

> which is zero only at

alocal maximum at (0, —1).

Ny

Hinirur =
w0

=1

[-15, 1.5] by [-0.5, 3]
The minimum valueis 1 at x = 0.

T

—

Hinjrurm
H=n

V=1

[-47,47 by [-3.1,3.1]

The actual graph of the function has asymptotes at

x = *1, so there are no extrema near these values. (Thisis
an example of grapher failure.) Thereisalocal

minimum at (0, 1).

=

Y=

Haxirura
W=l

[-4.7,47 by [-3.1,3.1]

Maximum valueis2 at x = 1;
minimum valueisOatx = —landat x = 3.

i

LAl

Hinirurm
H=1 W=6.5

[—4, 4] by [—80, 30]
Minimum valueis —1—;5 ax=-3;
local maximum at (O, 10);

local minimum at (1, %)

=

W=k

—

Haxirum
n=i

(5, 5] by [0.7,0.7]

Maximum valueis%atx =1,

minimum value is —% ax=-1
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30. 3
x4+ 9% x=-30r0=x<3
I/(\______ 36. Notethatf(x)—{xg_gx‘ —3<x<Oorx=3
Hiniraura -3?+9, x<-30r0<x<3
ki Lkt Therefore, f'(x) = { 2 '
[—5, 5] by [—0.8, 0.6] 3xc—9, —3<x<0orx>3.
) 1 (@) No, since the left- and right-hand derivatives at x = 0
Maximum valueis - at x = 0; are —9 and 9, respectively
2 ) .
minimum valueis —% at x = —2. (b) No, since the left- and right-hand derivatives at x = 3
2 are —18 and 18, respectively.
3L (©) No, since the left- and right-hand derivatives at x = —3
™, _/ are —18 and 18, respectively.
(d) The critical points occur whenf’(x) = 0
(at x = +V/3) and when f '(x) is undefined (at x = 0 or
[—6, 6] by [0, 12] X = *=3). Theminimum vaueisOatx= —3,a x =0,
Maximum valueis 11 at x = 5; and at x = 3; local maxima occur at (—\/é, 6\/5) and
minimum value is 5 on the interval [—3, 2]; (\/5 6\/5).
local maximum at (=5, 9) - '
32. '
ya on
_/ Huxi/rﬁm
] w=-.B T=1.041 287
—4,4 by [-3,3
[—3.8] by [-5.5] [ ] by [ ]
Maximum value is 4 on the interval [5, 7]; y' = x2%(1) + 2 V(x+ 2) = 214
minimum value is —4 on the interval [—2, 1]. 3 3Vx
33. . o
# crit. pt. | derivative | extremum | value
x=—21 0 |loca max | 210Y3 ~ 1.034
5 25
x =0 |undefined | local min 0

[~6, 6] by [-6, 6]

38.
Maximum value is 5 on the interval [3, »);
minimum value is —5 on the interval (—«, —2].

EE s

2_
y' = x23(2x) + Ex_ﬂ3(x2 —4) = 8x 5 8
[6, 6] by [0, 9] 3 3V/x

Minimum valueis 4 on the interval [—1, 3]
35. (@) No, sincef’(x) = %(x — 2)~8 which is undefined at

crit. pt. | derivative| extremum | vaue

X=2. x=-1 0 minimum -3
(b) The derivative is defined and nonzero for all x # 2. x =0 | undefined | local max 0
Also, f(2) = 0and f(x) > Ofor all x # 2. x=1 0 minimum | -3

(c) No, f(x) need not not have a global maximum because
its domain is al real numbers. Any restriction of f to a
closed interval of the form [a, b] would have both a
maximum value and a minimum value on the interval.

(d) The answers are the same as (a) and (b) with 2 replaced
by a.



39.

Haxirurm
H=ibibzize Iv=z
[-2.35, 2.35] by [-3.5, 3.5]
, 1 \/ 2
y =x:——(—2) + ()V4 - x
2Va - x?
_ X+ (A _ 42

Va-x? Va - x?

derivative | extremum | value

undefined | local max
x=-\2 0

x=V2 0
undefined | local min

maximum

40.

Hazirum
W=z =4.4616768

[-4.7,47 by [—1, 5]
1
(-1) + 2xV3 —x
2V3 - x
_ X2+ 43 -x) _ —5x%+ 12X

2V3—-x 2V3—-x

y:XZ.

derivative| extremum |

minimum -2

value

x=0 0 minimum

X== 0

local max 144
25

undefined | minimum

v

[-4.7,47 by [0, 6.2]

,:{72, x<1
y 1'

Xx>1
crit. pt. | derivative| extremum | value

41.

x=1 | undefined| minimum | 2

0

15Y2 ~ 4.462

0

42.

43.
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1
[—4,4 by [—1, 6]
_ {—1, x<0
Y= 12-2x x>0
crit. pt. | derivative | extremum | value
x =0 [ undefined | local min 3
x=1 0 local max 4
[—4,6] by [—2, 6]
, _{—Zx— 2, x<1
T l-2x+6, x>1

crit. pt. | derivative | extremum | value
x=-1 0 maximum| 5
x =1 |undefined | local min | 1
x=3 0

e
y

QL"QTEL“EBB F=-Z.079z01

[74v 6] by [75v 5]
We begin by determining whether f'(x) is defined at x = 1,
where

maximum| 5

—=X*—-X+= x=1
f(x) = 4 2 4

x3 — 6x2 + 8, x>1

Left-hand derivative:
—1(1+h)2—%(1+h)+%—3

im fA+D—f@) _ 4
h-0 h h-o h
= lim ="
h-o- 4h

= lim 1(~h - 4n)
h-o 4
-1

Right-hand derivative:
fa+n-f@

lim
h-0* h 3 )
jim AP -6+ e+ -3
h-0"
3 _ 2 _
_jim M®=3n%—h
h-o*
= lim (h®*-3h—1)
h-0*"
=-1
_lx_17 Xx=1
Thusf'()=§ 2 2

X2 —12x+8, x>1
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44,

45,

46.

47.

48.

49.

50.

51.

continued

Note that —%x - % =0whenx = —1, and
12 = V122 — 4(3)(8)

3x2 — 12x + 8 = Owhenx = 26
_12=Vag_,, 2V3

6 - 37
But 2 — 2—\3@ =~ 0.845 < 1, so the only critical points

occur at X = —1andx=2+2—\3/§z3.155.

crit. pt. | derivative| @(tremum| vaue
0
0

x=-1

X = 3.155 local max | = —3.079

local max ‘ 4

Graph (), since thisis the only graph that has positive
slope at c.
Graph (b), since thisis the only graph that represents a
differentiable function at a and b and has negative slope
ac.
Graph (d), since this is the only graph representing a
function that is differentiable at b but not at a.
Graph (a), since thisis the only graph that represents a
function that is not differentiable at a or b.
(@) V(X) = 160x — 52x + 4x3

V/(X) = 160 — 104x + 12x% = 4(x — 2)(3x — 20)

The only critical point in theinterval (0, 5) isat x = 2.

The maximum value of V(x) is 144 at x = 2.

(b) Thelargest possible volume of the box is 144 cubic
units, and it occurs when x = 2.
(@) P'(x) =2 — 200x 2
The only critical point in the interval (0, «) is at
x = 10. The minimum value of P(x) is40 at x = 10.
(b) The smallest possible perimeter of the rectangle is
40 units and it occurs at x = 10, which makes the
rectangle a 10 by 10 square.

(@) f'(x) = 3ax? + 2bx + cisaquadratic, so it can have

0, 1, or 2 zeros, which would be the critical points of f.

Examples:

[-3,3 by [-55]

The function f(X) = x3 — 3x has two critical points at
x=—-landx =1

[73v 3] by [75v 5]

The function f(X) = x® — 1 has one critical point at
x=0.

[-3,3] by [-5, 5]
The function f(X) = x® + x has no critical points.

(b) The function can have either two local extreme values
or no extreme values. (If there is only one critical point,
the cubic function has no extreme values.)

52. (a) By the definition of local maximum value, thereis an
open interval containing ¢ where f(x) = f(c),
sof(x) — f(c) = 0.

(b) Because x — ¢t ,we have (x — ¢) > 0, and the sign of
the quotient must be negative (or zero). This means the
limit is nonpositive.

(c) Becausex — ¢, we have (x — ¢) < 0, and the sign of
the quotient must be positive (or zero). This means the
limit is nonnegative.

(d

~

Assuming that f'(c) exists, the one-sided limitsin (b)
and (c) above must exist and be equal. Since one is
nonpositive and one is nonnegative, the only possible
common valueis 0.

(e) There will be an open interval containing ¢ where
f(x) — f(c) = 0. The difference quotient for the
left-hand derivative will have to be negative (or zero),
and the difference quotient for the right-hand derivative
will have to be positive (or zero). Teking the limit, the
left-hand derivative will be nonpositive, and the
right-hand derivative will be nonnegative. Therefore,
the only possible value for f’(c) is 0.

53. (@)

[-0.1, 0.6] by [—1.5, 1.5]

f(0) = Oisnot alocal extreme value because in any
open interval containing x = 0, there are infinitely
many points where f (x) = 1 and where f (x) =—1.

(b) One possible answer, on the interval [0, 1]:
(1 —x) cos L

F() = 1-x
0, x=1

0=x<1

This function has no local extreme value at
x = 1. Note that it is continuous on [0, 1].

m Section 4.2 Mean Value Theorem
(pp. 186-194)

Quick Review 4.2
1. 2¢-6<0
22 <6
x2 <3
-V3<x<V3
Interval: (—V/3, V/3)



2. 3x*-6>0
3% >6
X2 >2
x <—V2orx>V2
Intervals: (—o, —\/5) U (\/5, )
3. Domain: 8- 22 =0
8 = 2x?
4 = x?
—2=x=2
The domainis[—2, 2].
4. fiscontinuous for al x in the domain, or, in the interval
[—2,2].
5. fisdifferentiable for all x in the interior of its domain, or,
intheinterval (-2, 2).

6. Werequirex? — 1 # 0, so the domain isx # 1.
7. fiscontinuous for al x in the domain, or, for al x # *1.
8. fisdifferentiable for al x in the domain, or, for all x # *1.
9. 7=-2(-2+C

7=4+C

CcC=3

10. —1=(1)?+21) +C
-1=3+C
C=-4

Section 4.2 Exercises
1 @ f'(x) =5—2x
Sincef’(x) > 0on (—oo, g) f/() =0atx = g and

f'(x) <0on (g 00), we know that f(x) has aloca

maximum at X = g Sincef(%) = %5, the local
maximum occurs at the point (g %) (Thisisalso a

global maximum.)

(b) Sincef’(x) > 0on (—oo, g) f(x) isincreasing on
-3

‘2
(c) Sincef’(x) <0on (g oc), f(x) is decreasing on B oc).
2@gx=2x—-1

Sinceg’(x) < 0on (—00, %) g(x)=0ax= % and
g’'(x) >0on (% oo), we know that g(x) has alocal
minimum at X = %

Since g(%) = —4749, the local minimum occurs at the

point (% —%?). (Thisis aso agloba minimum.)
(b) Sinceg’(x) > 0on (% oo), g(X) isincreasing on E oo).

(c) Sinceg’'(x) < 0on (—oo, %) g(X) is decreasing on

=3

Section4.2 133

, 2
3. (@ hx= —Z
Since h'(X) is never zero and is undefined only where
h(x) is undefined, there are no critical points. Also, the
domain (—o°, 0) U (0, ) has no endpoints. Therefore,
h(x) has no local extrema.
(b) Since h’(x) is never positive, h(x) is not increasing on
any interval.
(¢) Sinceh’(x) < 0on (—2,0) U (0, =), h(X) is decreasing
on (—<, 0) and on (0, »).
, 2
4@ KW =-5
Since k' (X) is never zero and is undefined only where
k(x) is undefined, there are no critical points. Also, the
domain (—<°, 0) U (0, «) has no endpoints. Therefore,
k(x) has no local extrema.
(b) Sincek’(x) > 0 on (—, 0), k(X) isincreasing on
(—ool O)
(c) Sincek’(x) < 0on (0, =), k(x) is decreasing on (0O, «).
5. (a) f'(X) = 2%
Since f'(x) is never zero or undefined, and the domain
of f(x) has no endpoints, f(x) has no extrema.
(b) Sincef’(x) isaways positive, f(X) isincreasing on
(—ool oo)_
(c) Sincef’(X) is never negative, f(X) is not decreasing on
any interval.
6. (a) f'(X) = —0.5e 0%
Since f'(x) is never zero or undefined, and the domain
of f(x) has no endpoints, f(x) has no extrema.
(b) Sincef’(X) is never positive, f(x) is not increasing on
any interval.
(c) Sincef’(x) isaways negative, f(x) is decreasing on

(—ool oo)_

7 b _ 1
@y 2Vx+ 2
Inthedomain [—2, ), y’ isnever zero and is
undefined only at the endpoint x = —2. The function 'y
has alocal maximum at (—2, 4). (Thisis also a global
maximum.)

(b) Sincey’ is never positive, y is not increasing on any
interval.

(c) Sincey’ isnegative on (—2, ), y is decreasing on
[=2, ).

8. (a) y' = 4x3 — 20x = 4x(x + VB)(x — V/5)

The function has critical pointsat x = —\/5, x=0,
andx = V5. Sincey’ < 0on (—, —\/5) and
(0, V5) andy’ > 0on (—V5,0) and (V/5, =), the
points at X = +\/5 are local minima and the point at
X = 0isalocal maximum. Thus, the function has a
local maximum at (0, 9) and local minima at
(=V/5, —16) and (V'5, —16). (These are also global
minima.)

(b) Sincey’ > 0on (—\/5, 0) and (\/5, ), yisincreasing
on[~V5,0] and [V/5, ).

(c) Sincey’ < 0on (—o», —\/5) and (O, \/5), yis
decreasing on (—2, —\/5] and [0, \/5].
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Haximur
n=c.BEAEEET IV=Z.079201Y
[—4.7,4.7) by [-3.1, 3.1]

@ f'(9) =x- 2\/%(—1)+\/4—x
_ —3x+8
2V4 —x

The local extrema occur at the critical point x = g and

at the endpoint x = 4. Thereisaloca (and absolute)

8 i) or approximately (2.67, 3.08),

3 33

and alocal minimum at (4, 0).

maximum at (

(b) Sincef’(x) > 0on (—oo, g) f(X) isincreasing on

-3

(© Sincef’(x) < 0on (g 4), f(x) is decreasing on

O [g 4}.
L

)

Hiniraura
H=E

¥=-7.EEOEZE

[—5, 5] by [—15, 15]

4x + 8
3XZ3

(@ 900 = x3() + X P+ 8 =
The local extrema can occur at the critical points
x = —2and x = 0, but the graph shows that no extrema
occursat x = 0. Thereisalocal (and absolute)
minimum at (—2, —6\?75) or approximately
(=2, —7.56).

(b) Sinceg’(x) > 0 on theintervals (—2, 0) and (0, «), and
g(x) iscontinuous at x = 0, g(x) isincreasing on
[—2, ).

(c) Sinceg’(x) < 0ontheinterval (—, —2), g(X) is
decreasing on (—o, —2].

—\

Haxirura
H=E

11.

=2k

[—5, 5] by [~0.4, 0.4]

vrer P DED - () xP—4
(a) h (X) - (X2 + 4)2 - (XZ + 4)2
_(x+2(x-2
(x* + 4

The local extrema occur at the critical points, X = *2.

Thereisalocal (and absolute) maximum at (—2, %)

and alocal (and absolute) minimum at (2, 7%)_

12.

13.

14.

(b) Sinceh’(x) > 0on (—o, —2) and (2, »), h(xX) is
increasing on (—o, —2] and [2, «).
(c) Sinceh’(x) < 0on (-2, 2), h(x) is decreasing on

[E]- L
R

[-4.7,47 by [-3.1,3.1]

- -x2) _ _ x*+4
- 4? - 47
Since k' () is never zero and is undefined only where
k(x) is undefined, there are no critical points. Since
there are no critical points and the domain includes no
endpoints, k(x) has no local extrema.

(b) Since k’(x) is never positive, k(X) is hot increasing on
any interval.

(c) Sincek’(x) is negative wherever it is defined, k(x) is
decreasing on each interval of its domain: on
(=%, =2),(=2,2),and (2, »).

/

w

ELr:ierEr;?uﬂ W'=-2.67BE9E
[—4,4] by [-6,6]

(@ f'(x) =3x?— 2+ 2sinx
Note that 3x> — 2 > 2 for [x = 1.2 and [2sin x| = 2 for
al x, sof'(x) > 0for x| = 1.2. Therefore, al critical
points occur in the interval (—1.2, 1.2), as suggested by
the graph. Using grapher techniques, there is alocal
maximum at approximately (—1.126, —0.036), and a
local minimum at approximately (0.559, —2.639).

(b) f(x) isincreasing on the intervals (—«, —1.126] and

[0.559, »), where the interval endpoints are

approximate.

(c) f(x) isdecreasing on the interval [—1.126, 0.559],
where the interval endpoints are approximate.

-

[-6, 6] by [-12, 12]
(@ g(x)=2-snx
Since 1 = g'(x) = 3for al x, there are no critical
points. Since there are no critical points and the domain
has no endpoints, there are no local extrema.
(b) Sinceg’(x) > 0for al x, g(x) isincreasing on (—o, ).

(c) Sinceg’(x) is never negative, g(x) is not decreasing on
any interval.

(@ k() =L




15. (a) fiscontinuous on [0, 1] and differentiable on (O, 1).

b) f(o="0-10

2c+2=2-01
1

2c=1
c-1
2

16. (a) fiscontinuous on [0, 1] and differentiable on (O, 1).

f(1) f(0)

b ="
20~z _1- 0
3 1
cvs_3
2 -3
c= E)
2
c=2
27
17. (a) fiscontinuouson [—1, 1] and differentiable on
(-1, 1).
f(l) f(—1)
b f'(c) = ~F————=
(b) ©="r"5
T T
i)
V1 2
Vi =2
aa
4
1- Cz = ?
2_q_ 4
c 1 —
4
c==*[1-==~=0771
w

18. (a) fiscontinuouson [2, 4] and differentiable on (2, 4).
f(4 -2

b f'©=""—
1 :In3—ln1
c—1 2
—1=_2
In3

—1+ -2 ~2820
In3
19. (a) The secant line passes through (0.5, f(0.5)) = (0.5, 2.5)
and (2, f(2)) = (2, 2.5), soitsequationisy = 2.5.

(b) The slope of the secant lineis 0, so we need to find ¢
such that f'(c) =

1-¢c2=0
2:1
c=1
fo) =f(1) = 2

The tangent line has slope 0 and passes through (1, 2),
S0 its equationisy = 2.
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20. (a) The secant line passes through (1, f(1)) = (1, 0) and

(3,1(3) = (3, V2), snitsslope is
Va-0_Va_ 1

3-1 2 e
The equation isy = &(x -1+0

ory= ,ory = 0.707x — 0.707.

Y

(b) We need to find ¢ such that f'(c) = —~—.
V2

[

N
o
I
[N

N
[3)
I
[E=Y
Il
Nlw N ﬁﬁ‘
[
NN

o
= |
—

e [N
Il
—_
—
N w
Al
Il
|~
Il
B

The tangent line has slope L and passes through
3 1 ) 1 3 1
Its equationisy = —(x - —) +——or
(2 \f Vol 2] V2
:—x—— ory =~ 0.707x — 0.354.
V2 2V2

21. (a) Sincef'(x) = %x‘%, fis not differentiable at x = 0.

(b)
[71! l] by [71v 1]
f(1) f(=1)
§r 1) =1(=1
© (© = D
123 _ 1 - (=)
3 2
i g
3
c?=3

c=+3"%~0192
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1, 0=x<1

22. () Sincef’(x)z{l_ 3—yo1

fisnot differentiable at x = 1. (If f were differentiable
at x = 1, it would violate the Intermediate Value
Theorem for Derivatives.)

<

(0.3 by[-1,3

(b)

f'(x) = =1 for al x where f'(X) is defined. Therefore,

there is no such value of c.

! , 1, -1=x<0
23. (@) Sincef'(x) = {_1’ 1=x>0
fis not differentiable at x = 0. (If f were differentiable
at x = 1, it would violate the Intermediate Value
Theorem for Derivatives.)

(b)

5 LINE s

[(-L1by[-12]

f-f=y _0-
1-(-1) 2

f'(x) = =1 for al x where f'(x) is defined. Therefore,

(c) Werequiref’(c) = 0_ 0, but

there is no such value of c.

24. (a) Wetest for differentiability at x = 0, using the limits
given in Section 3.5.

Left-hand derivative:
lim fO+h -0 _,
h-0" h h
Right-hand derivative:
fO+h) —f©O _;,, @+sinh)—1

cosh—1

im =0
-0

lim
h-0" h h-0" .
= lim Snh
h-o* h
=1

Since the left- and right-hand derivatives are not equal,

fisnot differentiable at x = 0.

25.

26.
27.
28.
29.
30.

31

32.

33.

L

[~ 7] by [-1,2]

—sinx, —m=x<0

(c) Notethat f (x)={ cosx  0<x=m"

flm) —f(=m) _1-(=1) _
7 — (—m) 2w

Werequiref'(c) = 1
s
For —7 < ¢ < 0, thisoccurs when —sinc = i, 6]
au

c= fsin*1<i> ~ —0.324 or
au
C=—m+ sin’l<l> ~ —2818. For 0 < ¢ < , this
o
occurs when cosc = i, soC = cos’1<i> =~ 1.247. The
T T
possible values of ¢ are approximately

—2.818, —0.324, and 1.247.

_x
fg =% +cC
f(x)=2x+C
f)=x2—x2+x+C

f(x) = —cosx + C
fx)=¢e"+C
f)=In(x—21) +C

£(x) =%+C,x>0
f(2) =1
lic-1
2
c=1
2
=1,1
f0g = +5,x>0
fx) =x¥4+C
f(1) = -2
1"+ c= -2
1+C=-2
cC=-3
f(x) =x¥4 -3
f) =Inx+2 +C
f(-1) =3
In(-1+2)+C =3
0+C=3
cC=3
f) =In(x+2) +3
f(X) =x>+x—sinx+C
f(0) =3
0+C=3
cC=3

f(X) =x>+x—sinx+ 3



35.

36.

37.

38.

39.

40.

41.

Possible answers:

@ (b)

N

[-2,4by[-24] [—1,4] by [0, 3.5]

[—1, 4] by [0, 3.5]
Possible answers:
(@ (b)

N\

[71v 5] by [71! 8]

~
|

[7lv 5] by [72v 4]

© \ (d)
.

[7lv 5] by [71v 8]
One possible answer:

|
%

[—3, 3] by [-15, 15]
One possible answer:

/\/

[—3,3] by [-70, 70]
Because the trucker's average speed was 79.5 mph, and by
the Mean Value Theorem, the trucker must have been going
that speed at least once during the trip.

Let f(t) denote the temperature indicated after t seconds.
We assume that f'(t) is defined and continuous for

0 =t = 20. The average rate of change is 10.6°F/sec.
Therefore, by the Mean Value Theorem, f'(c) = 10.6°F/sec
for some value of cin [0, 20]. Since the temperature was
constant before t = 0, we also know that f’(0) = 0°F/min.
But f’ is continuous, so by the Intermediate VValue Theorem,
the rate of change f'(t) must have been 10.1°F/sec at some
moment during the interval.

Because its average speed was approximately 7.667 knots,
and by the Mean Value Theorem, it must have been going
that speed at least once during the trip.

!
[71v 5] by [71! 8]

42.

43.

44,
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The runner’s average speed for the marathon was
approximately 11.909 mph. Therefore, by the Mean Value
Theorem, the runner must have been going that speed at
least once during the marathon. Since the initial speed and
fina speed are both 0 mph and the runner’s speed is
continuous, by the Intermediate Value Theorem, the
runner’s speed must have been 11 mph at least twice.
(@) Sincev'(t) = 1.6, v(t) = 1.6t + C. But v(0) = 0, so
C = 0 and v(t) = 1.6t. Therefore,
v(30) = 1.6(30) = 48. The rock will be going
48 m/sec.
(b) Let s(t) represent position.
Since s'(t) = v(t) = 1.6t, s(t) = 0.8t> + D. But
s(0) = 0,0 D = 0 and s(t) = 0.8t2. Therefore,
5(30) = 0.8(30)% = 720. The rock travels 720 metersin
the 30 seconds it takes to hit bottom, so the bottom of
the crevasse is 720 meters below the point of release.
(c) Thevelocity is now given by v(t) = 1.6t + C, where
v(0) = 4. (Note that the sign of theinitial velocity is
the same as the sign used for the acceleration, since
both act in a downward direction.) Therefore,
v(t) = 1.6t + 4, and s(t) = 0.8t% + 4t + D, where
s(0) = 0 and so D = 0. Using s(t) = 0.8t + 4t and the
known crevasse depth of 720 meters, we solve
s(t) = 720 to obtain the positive solution t = 27.604,
and so V(t) = v(27.604) = 1.6(27.604) + 4 ~ 48.166.
The rock will hit bottom after about 27.604 seconds,
and it will be going about 48.166 m/sec.

(a) We assume the diving board islocated at s = 0 and the
water at s = 10, so that downward velocities are
positive. The acceleration due to gravity is 9.8 m/sec?,
soV'(t) = 9.8 and v(t) = 9.8t + C. Since v(0) = 0, we
have v(t) = 9.8t. Then the position is given by s(t)
where s'(t) = v(t) = 9.8t, so S(t) = 4.9t% + D. Since
s(0) = 0, we have s(t) = 4.9t2. Solving s(t) = 10 gives
2 = 10 _ 100

——, o0 the positive solution ist = E. The
4.9 49 7
10

velocity at thistime isv<7> = 9.8(1—70> = 14 m/sec.

(b) Again v(t) = 9.8t + C, but thistime v(0) = —2 and so
v(t) = 9.8t — 2. Thens'(t) = 9.8t — 2, so
s(t) = 4.9t2 — 2t + D. Since s(0) = 0, we have

s(t) = 4.9t%2 — 2t. Solving s(t) = 10 gives the positive

solutiont = 2++g\/§ ~ 1.647 sec.

The velocity at thistimeis

v(z + 10\/5) _ 9.8<2 +10V2
9.8 9.8

about 14.142 m/sec.

)—2=10\/§m/secor
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45.

46.

47.

48.

49,

50.

51.

Because the function is not continuous on [0, 1]. The
function does not satisfy the hypotheses of the Mean Value
Theorem, and so it need not satisfy the conclusion of the
Mean Value Theorem.

Because the Mean Value Theorem applies to the function
y = sinxon any interval, and y = cos x is the derivative of
sin x. So, between any two zeros of sin x, its derivative,
COS X, must be zero at least once.

f(X) must be zero at least once between a and b by the
Intermediate Value Theorem. Now suppose that f (X) is zero
twice between a and b. Then by the Mean Value Theorem,
f'(x) would have to be zero at least once between the two
zeros of f(X), but this can’t be true since we are given that
f’(x) # 0 on thisinterval. Therefore, f(x) is zero once and
only once between a and b.

Let f(X) = x* + 3x + 1. Then f(X) is continuous and
differentiable everywhere. f/(x) = 4x3 + 3, which is never
zero between x = —2and x = —1. Sincef(—2) = 11 and
f(—1) = —1, exercise 47 applies, and f (x) has exactly one
zero between x = —2and x = —1.

Let f(X) = x + In (x + 1). Then f(X) is continuous and
differentiable everywhereon [0, 3]. f'(X) = 1 + lel
which is never zeroon [0, 3]. Now f(0) = 0, sox = 0is
one solution of the equation. If there were a second
solution, f(x) would be zero twicein [0, 3], and by the
Mean Vaue Theorem, f '(x) would have to be zero
somewhere between the two zeros of f(x). But this can’t
happen, since f'(X) is never zero on [0, 3]. Therefore,

f(x) = 0 has exactly one solution in the interval [0, 3].
Consider the function k(x) = f(x) — g(x). k(X) is continuous
and differentiable on [a, b], and since

k(@) = f(a) — g(a) = 0 and k(b) = f(b) — g(b) = O, by the
Mean Vaue Theorem, there must be apoint cin (a, b)
wherek’(c) = 0. But sincek’(c) = f'(c) — g’(c), this
means that f'(c) = g’(c), and c is a point where the graphs
of f and g have parallel or identical tangent lines.

I
é/f

[-11]by[-22]
(a) Increasing: [—2, —1.3] and [1.3, 2];
decreasing: [—1.3, 1.3];
local max: x = —1.3
local min: x = 1.3

(b) Regression equation: y = 3x? — 5

N

el

[—2.5, 2.5] by [-8, 10]

(c) Sincef'(x) = 3x%> — 5, we have f(x) = x — 5x + C.
But f(0) = 0, s0 C = 0. Then f(X) = x° — 5x.

52.

53.

55.

56.

57.

(@ Toward: 0<t<2and5<t<§;
awvay:2<t<5

(b) A loca extremum in this problem is a time/place where
Priya changes the direction of her motion.

(c) Regression equation:
y = —0.0820x° + 0.9163x? — 2.5126x + 3.3779

[—0.5, 8.5] by [-0.5, 5]

(d) Using the unrounded values from the regression
equation, we obtain
f'(t) = —0.2459t% + 1.8324t — 2.5126. According to
the regression equation, Priyais moving toward the
motion detector when f'(t) < 0 (0 <t < 1.81 and
5.64 < t < 8), and away from the detector when
f'(t) > 0(1.81 <t <5.64).

1 1

fo)—f@ _b a_ _1

b—a b—a ab

Q= -t g t__1 2_
f'(c) 202 abandc ab
Thus, ¢ = Vab.
f(b) —f(a) _ b?—a? _ n

b—a b—a b+a
f’(c)=2c,302c=b+aandc=a;b.
By the Mean Value Theorem,

sinb — sina = (cos ¢)(b — a) for some ¢ between a and b.
Taking the absol ute value of both sides and using
|cos c| = 1 gives the result.

Apply the Mean Value Theorem to f on [a, b].
Since f(b) < f(a), % is negative, and hence f ' (x)
must be negative at some point between a and b.

Let f(x) be amonotonic function defined on aninterval D.
For any two values in D, we may let x, be the smaller value
and let X, be the larger value, so X < X, Then either

f(x)) <f(x,) (if fisincreasing), or f(x)) > f(x)) (if fis
decreasing), which meansf(x,) # f(x)). Therefore, f is
one-to-one.

m Section 4.3 Connecting f and f” with the
Graph of f (pp. 194-206)

Exploration 1
1.

2.

Finding f from f’

Any function f(x) = x* — 4x% + C where C isareal
number. For example, let C = 0, 1, 2. Their graphs are all
vertical shifts of each other.

Their behavior is the same as the behavior of the function f
of Example 8.



Exploration 2 Finding f from f’ and f”

1. f has an absolute maximum at x = 0 and an absolute
minimum of 1 at x = 4. We are not given enough

information to determine f (0).
2. fhasapoint of inflection at x = 2.

i

[—3,5] by [—5, 20]

Quick Review 4.3

1. x2—9 <0
(X+3)(x—3) <0

Intervals |x<—3|—3<x<3|3<x
Sign of
(x+3)(x—73) + - +

Solution set: (—3, 3)
2. X2 —4x >0
Xx+2)(x—2) >0

Intervals |x<—2|—2<x<0|0<x<2|2<x

Sign of ‘ ‘ ‘ ‘

XX+ 2)(x—2) - + - +
Solution set: (—2, 0) U (2, =)

3. f: dl reds

f': al reals, sincef'(x) = xe* + €*
4. f: dl reds

fnx¢qgmmx@:§r%

5 fix#2
. ; iy = =@ - @) _ -2
f'ix# 2 sincef’(x) = 27 S x-22
6. f: al redls

f':x# 0,sincef’(x) = %x‘%

7. Left end behavior model: O
Right end behavior model: —x%e*
Horizontal asymptote: y = 0

8. Left end behavior model: x%e™*
Right end behavior model: 0
Horizontal asymptote: y = 0

9. Left end behavior model: O
Right end behavior model: 200
Horizontal asymptotes: y = 0, y = 200

10. Left end behavior model: O

Right end behavior model: 375
Horizontal asymptotes. y = 0,y = 375

Section 4.3

Section 4.3 Exercises

1

)]

. (@) Zero:x = =1,
positive: (—o, —1) and (1, »);
negative: (—1, 1)
(b) Zero: x = 0;
positive: (0, );
negative: (—°, 0)
. (@) Zero:x = 0, £1.25;
positive: (—1.25, 0) and (1.25, »);
negative: (—, —1.25) and (0, 1.25)
(b) Zero: x = *=0.7;
positive: (—o, —0.7) and (0.7, «);
negative: (—0.7, 0.7)
(b) [~2, 0] and [2, =)
(c) Loca maxima: x = —2and x = 2;
local minimum: x = 0
(@ [-2 2]
(b) (=, —2] and [2, =)
(c) Loca maximum: x = 2;
local minimum: x = —2
. (@) [0, 1], [3,4], and [5.5, 6]
(b) [1, 3] and [4, 5.5]
(¢) Local maxima: x=1,x =4
(if fis continuous at x = 4), and x = 6;
local minima x =0, x= 3,and x = 5.5
. If f is continuous on the interval [0, 3]:
(@ [0, 3]
(b) Nowhere
(c) Loca maximum: x = 3;
local minimum: x = 0

Y =2x—1
Intervals x< 1t x> 1
2 2
Signof y’ - +
Behavior of y | Decreasing | Increasing

y" = 2 (always positive: concave up)
Graphical support:

[/

W=-1.2%

Hiniraura
=t

[74v 4] by [73v 3]

o

o (]

© (=)

(d) Nowhere

(e) Loca (and absolute) minimum at (% —%)
(f) None

139
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8.y = —6x% + 12x = —6x(X — 2)

10. y' = xe®™(—x73) + ¥ = el’x(l - %)

Intervals x<0 0<x<2 2<X
Sign of y’ - + -
Behavior of y | Decreasing | Increasing | Decreasing
y'=—-12x+ 12 = —-12(x — 1)
Intervals x<1 Xx>1
Sign of y” + -
Behavior of y | Concave up | Concave down
Graphica support:
Haxirum \
=g V=E
[—4 4] by [-6, 6]
(@ [0,2]
(b) (=, 0] and [2, =)
© (=1
(d) (1, =)
(e) Loca maximum: (2, 5);
local minimum: (0, —3)
(f) At(1,1)
9.y =8x3— 8x = 8x(x — 1)(x + 1)
Intervals Xx<-—-1 |-1<x<0|0<x<1l| 1<x
Sign of y’ - + - +
Behavior of y | Decreasing| Increasing | Decreasing | Increasing
y' = 24x2 — 8 = 8(V3x — 1)(V3x + 1)
1 1 1 1
Intervals X< ———— | ———<x<—| —<Xx
V3| V3 V3| V3
Sign of y” + - +
Behavior of y | Concaveup | Concave down | Concave up
Graphica support:
VY
Hinirurn
=l r=-1

[-4,4 by [-33]
(8 [—1, 0] and [1, =)
(b) (==, —1] and [0, 1]

—oo, — L EEp
0 (=gl
o (- L L
@ (3573
(e) Loca maximum: (0, 1);
local (and absolute) minima: (—1, —1) and (1, —1)

035

Intervals Xx<0 |0<x<1 1<x
Sign of y’ + - +
Behavior of y | Increasing | Decreasing | Increasing
y' = e¥(x?) + (1 - 1>e1’X(—x*2) -
X X
Intervals x<0 x>0
Sign of y” - +
Behavior of y | Concave down | Concave up
Graphical support:
L/
ﬂ;n:imum V=2.718z818
[-8 8 by [-6,6]
(@ (=, 0)and[1, =) (b) (0, 1]
(©) (0,%) (d) (==, 0
(e) Loca minimum: (1, €)
(f) None
1y = xﬁ(f&) + (VB =) = 8{;_2122
Intervals Ve<x<-2| —2<x<2|2<x<Vs8
Signof y’ - + —
Behavior of y Decreasing Increasing | Decreasing
1
,, (V8 —x)(—4) — (8 — az)zm(—zx)
= (VB =32
_ 23— 24x _ 2x(x* — 12)
(8- X2)3/2 (8- X2)3/2
Intervals -V8<x<0| 0<x<Vs8
Sign of y” + —
Behavior of y | Concaveup | Concave down
Graphical support:
S
[—3.02, 3.02] by [-6.5, 6.5]
@ [-22
(b) [-V8, —2] and[2, V8]
© (~V80)
(@ (0. V3

(e) Local maxima: (—V/8, 0) and (2, 4);
local minima: (—2, —4) and (V8 0)
Note that the local extremaat x = *+2 are also absolute
extrema.

) (0.0
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, _J—2x, x<O0

12.y'= {2x, x>0
Intervals x<0 x>0
Sign of y’ + +
Behavior of y | Increasing | Increasing

,,:{—2, x<0
Y=, x>o0

Intervals Xx<0 x>0

Sign of y” - +

Behavior of y | Concave down | Concave up

Graphical support:

A

/

[—4,4] by [-3,6]

(@ (=, 0)and [0, =)

(b) None

() (0,%)

(d) (==, 0)

(e) Loca minimum: (0, 1)

(f) Notethat (0, 1) is not an inflection point because the graph has no tangent line at this point. There are no inflection points.
13. y' = 12x% + 42x + 36 = 6(x + 2)(2x + 3)

Intervals X< =2 |=2<x<-—

N w

Sign of y’ + - +

Behavior of y | Increasing | Decreasing | Increasing

y' = 24X + 42 = 6(4x + 7)

7 7
< —= - <
Intervals X 2 2 X
Sign of y” - +
Behavior of y | Concave down | Concave up

Graphical support:
!

Hiniraura
H=-1.E F=-4H0EE

[—4, 4] by [—80, 20]

(@) (—o, —2] and [,g oo)

o[+
o(3

o (-

(&) Local maximum: (—2, —40); local minimum: (—g —%)

0 (4-2)
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14.

15.

16.

y = -4+ 1233 - 4
Using grapher techniques, the zeros of y’ are x = —0.53, x = 0.65, and x =~ 2.88.

Intervals X< —053|-053<x<0.65|0.65< x< 288 2.88 < x
Sign of y’ + - + -
Behavior of y | Increasing Decreasing Increasing Decreasing

y' = —12x% + 24x = —12x(x — 2)
Intervals x<0 0<x<?2 2<X

Sign of y” - + -

Behavior of y | Concave down | Concave up | Concave down

Graphica support:

A

%.5?53!35 V=16.234422
[—2, 4] by [—20, 20]

(@) (—<0, —0.53] and [0.65, 2.88]

(b) [—0.53, 0.65] and [2.88, )

(© 0.2

(d) (=, 0) and (2, »)

(e) Loca maxima: (—0.53, 2.45) and (2.88, 16.23);local minimum: (0.65, —0.68)

Note that the local maximum at x = 2.88 is also an absolute maximum.
(f) (0,1) and (2,9)

Ha
=

y = éx 4/5
Intervals x<0 0<x
Signof y’ + +
Behavior of y | Increasing | Increasing

Y = _Z%X—g/s
Intervals x<0 0<x
Sign of y” + -
Behavior of y | Concave up | Concave down

Graphical support:

—

—

[—6, 6] by [—1.5, 7.5]
(@) (=%, )
(b) None
© (=0
(d) (0, )
(e) None

® @3

y_ 1,23
= —=x
y 3

Intervals Xx<0 0<x

Sign of y’ - -

Behavior of y | Decreasing | Decreasing
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y' = SX 5/3
Intervals x<0 0<x
Sign of y” - +
Behavior of y | Concave down | Concave up

Graphical support:

T
‘-H-\_\_‘_\—\_

[—8, 8] by [0, 10]

(@) None

(b) (=, )

(© (0,%)

(d) (==, 0)

(e) None

) (0,5

17. This problem can be solved using either graphical or analytic methods. For a graphical solution, use NDER to obtain the graphs

shown.

y y/ yll f/f,_\
_,f”/ ﬁggﬁqssussu y=n
[—10, 20] by [0, 5] [—10, 20] by [0, 0.3] [—10, 20] by [—0.02, 0.02]

An analytic solution follows.

_ (" + 3e"®)(5e") — 5e¥(e* + 2.4e°%
(ex + 380'8X)2
5e% + 15eM8* — 5e* — 12et &
(eX 4 3e0.8>()2

361.8)(
(ex + 360A8X) 2

yr

Sincey’ > Ofor al x, yisincreasing for all x.

v (€ + 3e"8)%(5.4eM) — (3e¥)(2)(e* + 32 (e + 2.46%)
(e)( 4 3e0.8><)4

_ (eX + 360'8X)(5.4el'8><) _ (6e1.8>()(ex + 2.4e0.8><)
(ex + 390‘8X)3
(—0.6e* + 1.8e%8)gl 8%
(ex 4 3e0.8X)3
_ 06(3 _ eO.ZX)eZ.GX
(ex + 3eO.SX)3

y

Solvey” =0: 3— e’ =0

02x =1In3
x=5In3
Intervals x<5In3 5In3<x
Sign of y” + -
Behavior of y | Concave up | Concave down
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17. continued
(@) (=, )
(b) None
(©) (=%,5In3) = (—x, 5.49)
(d) (51In 3, ») = (5.49, »)
(e) None

) (5 In3, g) ~ (5.49, 2.50)

18. This problem can be solved using either graphical or analytic methods. For a graphical solution, use NDER to obtain the graphs
shown.

y y ’ yrr

)y
el / Y Ssabn :\UJ/

[—6, 10] by [0, 4] [—6, 10] by [0, 0.6] [—6, 10] by [—0.15, 0.15]
An analytic solution follows.

y = 8e X _ 8
267X + 51 24 505X
y = (2 + 5e7299(0) — (8)(—2.5 %%

(2 + Be™ 092

Zoe*O.SX
2+ 5e70%)?

Sincey’ > Ofor al x, yisincreasing for all x.

» _ (2456 9%92(—10e” %) — (20e~%%)(2)(2 + 5e~ %) (—2.5¢ >
(2 4 56*0.5)()4

_ (2 + 5e*0.5)<)(10e*0.5><) _ (40e*0.5><)(_2.5e*0.5)<)
(2 + 59705)()3

1Oe*0.5><(56*0.5x _ 2)
(2 + 5e” 0993

y

Solvey’=0: 5e 9% -2=0

e 05x — 2
5
—0.5x = Ing
5
X = —2In3: 2In§
5 2
5 5
Intervals x<2|n5 2In5<x
Sign of y” + —
Behavior of y | Concave up | Concave down
(@) (=%, )
(b) None

© (—oo, 2 |n§) ~ (~o, 1.83)

5 =~ o
(d) <2In5, 00)~(1.83, )
(e) None

) (2 In g 2) ~ (183, 2)



, ) 2 x<1

19.y"= { 2% x>1
Intervals x<1 1<x
Signof y’ + —
Behavior of y | Increasing Decreasing

. 0, x<1
v |

-2, x>1
Intervals x<1 1<x
Sign of y” 0 -

Behavior of y Linear | Concave down

Graphical support:

\

[=2,3] by [-5,3]
@ (== 1)
(b) [1,9)
() None
(d) (1,%9)
(e) None
(f) None
20.y =¢*
y' =¢€*
Sincey’ and y” are both positive on the entire domain, y is increasing and concave up on the entire domain.

.

Graphical support:

[0, 277] by [0, 20]
(@) [0, 27

(b) None

(c) (0, 2m)

(d) None

(e) Local (and absolute) maximum: (24, €™); local (and absolute) minimum: (0, 1)
(f) None

21y = xe¥(—2x7%) + (€)1
X2 — 2)

= eﬂX2(1 _ 2X—2) _ e1/X2< 2

Intervals x<-V2|-V2<x<o|lo<x<V2| V2<x
Sign of y’ + - - +
Behavior of y | Increasing | Decreasing Decreasing | Increasing

Section 4.3
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21. continued

22.

= (e¥)(2x 3 + 4x75)

2
_ 1x2( X+ 2
—Zex<75 )

X

Intervals

X<0

Y = @@ + (1 - 2 HEV) (-2

0<x

Sign of y”

+

Behavior of y

Concave down

Graphical support:

.

Hiniraura
n=1.41421%6

P2 3F1ENN

[—12, 12] by [—

@ (=, —V2]

9, 9]
and [V'2, =)

(b) [-V/2,0) and (0, V2]

© (0,)
(d) (==, 0

Concave up

() Loca maximum: (—V/2, —V/2e) =~ (—1.41, —2.33); local minimum: (V2, V2e) =~ (1.41, 2.33)

(f) None

This problem can be solved using either graphical or analytic methods. For a graphical solution, use NDER to obtain the graphs

shown.

y

y/

|

y//

0

Hazirurm
W=z.44a4Ee7 IV=id

LFAEE0R

Zerg
H=-z.443489

|

Zera
n=-1.Fazfeh

Y=2.FE-B

[-47,47) by [~

3,11

An analytic solution follows.

[—4.7, 4.7] by [~ 10, 10]

y = XZ;(—ZX) + V9 — x3(2%)

[—4.7, 4.7] by [~ 10, 10]

2V9 — X2
_ =33+ 18x _ —3x(x* - 6)
Vo -2 Vo -2
Intervals —3<x<-V6|-Ve<x<0|lo<x<V6|Ve<x<3
Signof y’ + - + -
Behavior of y Increasing Decreasing Increasing | Decreasing
1
(V9 = x3)(—9x2 + 18) — (—3x3 + 18x)2m(—2x)

(Vo - x3?

N x?)(—9x% + 18) + (—3x3 + 18X)(X)

(9 _ X2)3/2

6x* — 81x% + 162
- (9 _ X2)3/2



Find the zeros of y":

3(2x* — 27x% + 54) _
(9 _ X2)3/2

0

24— 272+ 54 =0

I Sy O 3V33
2(2) 4
X =+ 27—73\@ ~ +156
4
Note that we do not use x = *+ 27%3\/% ~ #3.33, because these values are outside of the domain.
Intervals —3<Xx<—-156|-156<x<156| 156<x<3
Sign of y” - + _
Behavior of y | Concave down Concave up Concave down

(@) [-3, —V6] and [0, V6] or, ~[—3, —2.45]

and [0, 2.45]
(b) [-V/6, 0] and [V6, 3] or, ~[—2.45, 0] and [2.45, 3]

(c) Approximately (—1.56, 1.56)
(d) Approximately (—3, —1.56) and (1.56, 3)

(e) Local maxima: (=6, 6V/3) ~ (+2.45, 10.39);
local minima: (0, 0) and (3, 0)

(f) ~(=1.56, 6.25)

1
1+ x?

23 y' =

Sincey’ > 0 for al x, y is aways increasing.

Y =2@ 7= @+ ) =

Intervals

Xx<O0

—2X
1+ x??

0<x

Sign of y”

+

Behavior of y

Concave up | Concave down

Graphica support:

[-4,4by[-22]

@ (=%, )
(b) None
© (=0
(d) (0, )
(e) None

) 0,0

Section 4.3
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24.

25.

y= X3/4(5 -X) = 5X3/4 _ X7/4

'’ Ex—m _ ZX3/4 _15-7

y

4 4 4x14
Intervals o<x<® Doy
7 7
Signof y’ + —
Behavior of y | Increasing Decreasing
Y = — 2554 2L, -ua
16 16
_ —3(7x+5)
16x>4

Sincey” < Ofor al x > 0, the graph of y is concave down
forx > 0.

Graphical support:

AR

Haxirum
=z i4z2BE71  V=E.0e02071

[0, 8] by [-6, 6]
o]
o2

(c) None

(d) (0, )

(e) Loca (and absolute) maximum:

3/4
(2[5 2) = (22, 500
7 7 7 7

local minimum: (0, 0)
(f) None
y = xU3(x — 4) = x¥3 — 4¢3

ﬂxys _ ﬂx—zs _&x-4

y'=3 3 B

Intervals Xx<0 0<x<1 1<x

Sign of y’ - - +
Behavior of y | Decreasing | Decreasing | Increasing

Y = gx—zs " gx—s/a _ %%’38
Intervals X< =2 -2<x<0 0<x
Sign of y” + — +
Behavior of y | Concave up | Concave down | Concave up

Graphica support:

/

¥=-3
[—4.8 by [-6,8]

Hiniraura
n=1

26.

27.

@ [1,)

(b) (==, 1]

(© (==, —2) and (0, )

(d) (=2,0

(e) Local minimum: (1, —3)

() (—2,6Y/2) =~ (—2, 7.56) and (0, 0)

y = x¥4(x + 3) = x5 + 3x14

5 1ys4, 3.-34_5x+3
Y =X X T =

Sincey’ > Ofor al x > 0, y is always increasing on its

domain x = 0.

3{3/4 _
16 16

9 _—74_5—9
TaX = 16x7A

yH —

o | o

Intervals o<x<= <X
5 5

Sign of y” - +
Behavior of y Concave up

Concave down

Graphical support:

[0, 6] by [0, 12]

(@ [0, %)
(b) None

0 (2
003
(e) Loca (and absolute) minimum: (0, 0)

JENCRE

We use a combination of analytic and grapher techniques to
solve this problem. Depending on the viewing window
chosen, graphs obtained using NDER may exhibit strange
behavior near x = 2 because, for example,

NDER (y, 2) = 1,000,000 whiley’ is actually undefined at

X3 — 22 + x —

X = 2. Thegraph of y = > ! is shown below.

ZeF o \ {
W= hgzezie Iv=0

—4,7,4.7] by [-5, 15]
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- (x=2)(3x% —ax + 1) — (4 — 2 + x - 1)(1)
y x—2?
_ 23 -8+ 8x—1
(x—27
The graph of y’ is shown below.

/

ZeF0 \ {
n=.1u4Ez623E I¥=0
[—4,7, 4.7] by [—10, 10]

The zeros of y" are x = 0.15, x = 1.40, and x = 2.45.

Intervals X<015 [015<x<140[140<x<2|2<x<245| 245<x
Sign of y’ - + - — +
Behavior of y | Decreasing Increasing Decreasing | Decreasing | Increasing

y_ (x—2)%6x% — 16x + 8) — (2 — 8x% + 8x — 1)(Q)(Xx — 2)
y = —ond
(x-2)
_ (x—2)(6x* — 16x + 8) — 2(2x® — 8x* + 8x — 1)
x-2?°
23 — 126 + 24x — 14
x-2?°
_2x— (X - 5x+7)
(x—2°
The graph of y” is shown below.

\_

ZeF0
B =t
[—4.7,4.7] by [-10, 10]

Note that the discriminant of x> — 5x + 7 is (—5)% — 4(1)(7) = —3, so the only solution of y” = 0isx = 1.

Intervals Xx<1 1<x<?2 2<X

Sign of y” + — +

Behavior of y | Concave up | Concave down | Concave up

(a) Approximately [0.15, 1.40] and [2.45, «)

(b) Approximately (—e, 0.15], [1.40, 2), and (2, 2.45]

(© (=, 1)and (2, )

(d) (1,2

(e) Loca maximum: =(1.40, 1.29);local minima: =(0.15, 0.48) and (2.45, 9.22)
® @1

149



150 Section 4.3

F_ D) —x2) _ X2+ 1

28y 02 + 12 02 + 1)2
Intervals x< -1 |-1<x<1l| 1<X
Signof y’ - + -
Behavior of y | Decreasing | Increasing | Decreasing

Y = (¢ + D=2 — (=¥ + D)(X* + 1)(29)

@+ 1)*

_ 0P+ (=20 — (X2 + 1)

23— 6x

o+ 1)°

_ 2(¥* = 3)

T2+ 1)3

Intervals

o2+ 1)3

x<—-\V3

-V3<x<0

0<x<V3

V3<x

Sign of y”

+

+

Behavior of y

Concave down

Graphical support:

~

o~

Haxiraum
n=l LA

[-4.7, 47 by [-0.7, 0.7]

@ [-1,1]

(b) (—, —1] and [, )
(© (—V3,0)and (V3,«)
(d) (—=, —V3)and (0, V3)

(e) Loca maximum: (1, %)

local minim

M (©,0), (\fs,

um: | —1, 1
2

?), and(—\/é, -

29.y' = (x — 1)(x — 2)

Intervals

Xx<1

1<x<2

Concave up

4

%)

Concave down

2<X

Signof y’

+

Behavior of y

Decreasing

Decreasing

y' = (x— D) + (x - 2x - 1)
=X—D[x—1) +2(x—2)]

Increasing

=(x—1DBx—5)
5 5
Intervals x<1 1<x<§ 5<x
Sign of y” + - +
Behavior of y | Concave up | Concave down | Concave up

(@) Thereare no local maxima.
(b) Thereisalocal (and absolute) minimum at x = 2.

(c) Thereare pointsof inflectionatx = 1and at x =

wlo

Concave up



30.y' = (x — 1*(x — 2)(x — 4)

Intervals x<1 1<x<2 |2<x<4 4 <X
Sign of y’ + + - +
Behavior of y | Increasing | Increasing | Decreasing | Increasing
y = %[(x — 12(2 — 6 + 8)]
= (x — D42x — 6) + (X2 — 6x + 8)(2)(x — 1)
= (x — D[(x — 1)(2x — 6) + 2(x*> — 6x + 8)]
= (X — 1)(4x? — 20x + 22)
= 2(x — 1)(2x% — 10x +11)
Note that the zeros of y” arex = 1 and
— 2 - —_ —_
(- 20=VIP 42D _10=V12_52V3 k0 aas
4 4 2
The zeros of y” can also be found graphically, as shown.
“\Jf
ZRF0 {
H=1.6228742 V=0
[_3! 7] by [_81 4]
Intervals x<1 1<x<163[163<x<337 337 <x
Sign of y” - + - +
Behavior of y | Concave down | Concaveup | Concave down Concave up

(a) Local maximumat x = 2
(b) Local minimum at x = 4
(c) Pointsof inflectionat x = 1, at x = 1.63, and at x = 3.37.

31. y
y=r()
=)
y=1"(x)
32. y
L y=1
M: f'(3)
0 X

y=1"(x)

y=f()

Section 4.3
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33. (a) Absolute maximum at (1, 2);
absolute minimum at (3, —2)

(b) None
(c) One possible answer:

y
2r y=f()

l_

Ak

2L

34. (a) Absolute maximum at (0, 2);
absolute minimum at (2, —1) and (-2, —1)

(b) At(1,0)and (—1,0)
(c) One possible answer:

(d) Sincefiseven, we know f(3) = f(—3). By the
continuity of f, sincef(x) < Owhen2 < x < 3, we
know that f(3) = 0, and sincef(2) = —1and f’(x) > 0
when 2 < x < 3, we know that f(3) > —1. In
summary, we know that f(3) = f(—3), -1 <f(3) =0,
and -1 <f(—-3)=0.

35.

36.

PN WA O
T

2 3%
Ak
2L
3

37. @ vty =s't)=2t -4
(b) at) =v'(t) =2

(c) It begins at position 3 moving in a negative direction. It
moves to position —1 whent = 2, and then changes
direction, moving in a positive direction thereafter.

38. (@ v(t)y=s'(t)=—-2—-2t
(b) at) =v'(t) = -2

(c) It begins at position 6 and moves in the negative
direction thereafter.

39. (@) V() =s'(t) =3t°—3
(b) a(t) = v'(t) = 6t
(c) It begins at position 3 moving in a negative direction. It
moves to position 1 when t = 1, and then changes
direction, moving in a positive direction theresfter.

40. (a) v(t) = s'(t) = 6t — 6t2
(b) a(t) =v'(t) = 6 — 12t
(c) It begins at position 0. It starts moving in the positive
direction until it reaches position 1 whent = 1, and

then it changes direction. It moves in the negative
direction theresfter.

41. (a) The velocity is zero when the tangent line is horizontal,
at approximately t = 2.2,t = 6, andt = 9.8.
(b) The acceleration is zero at the inflection points,
approximately t = 4,t = 8, andt = 11.
42. (a) The velocity is zero when the tangent line is horizontal,
at approximately t = —0.2,t = 4, and t = 12.
(b) The acceleration is zero at the inflection points,
approximately t = 1.5,t =52,t = 8,t = 11,
andt = 13.

43. No. f must have a horizontal tangent at that point, but f
could be increasing (or decreasing), and there would be no
local extremum. For example, if f(x) = x°,

f’(0) = 0 but thereis no local extremum at x = 0.

44. No. f"(x) could still be positive (or negative) on both sides
of X = ¢, in which case the concavity of the function would
not change at x = c. For example, if f(X) = x*, then
f”(0) = 0, but f has no inflection point at x = 0.

45. One possible answer:

y
5L
_I 1 1 1 1 i 1 1 1 1 I5 X
5L
46. One possible answer:
y
5k
_I 1 1 1 1 i 1 1 1 1 I5 X
-5F




47. One possible answer:

y
(-2 8) 10+

49. (a) Regression equation:

_ 2161.4541
Y = 1 28.1336e 0F7%

[0, 8] by [—400, 2300]

(b) At approximately x = 3.868 (late in 1996), when the
sales are about 1081 million dollars/year

(c) 2161.45 million dollars/year

50. (@) Inexercise13,a=4andb = 21, so _b = —Z,
3a 4

which is the x-value where the point of inflection
occurs. Thelocal extremaareat x = —2and X = >

which are symmetric about x = f%.

(b) Inexercise8,a= —2andb = 6, s0 —3—2\ = 1, which
is the x-value where the point of inflection occurs. The
local extremaareat x = 0 and x = 2, which are
symmetric about x = 1.

(©) f'(x) = 3ax? + 2bx + c and
f"(x) = 6ax + 2b.
The point of inflection will occur where

f"(x) = 0, whichisat x = —L.

3a
If there are local extrema, they will occur at the zeros
of f'(x). Sincef’(x) is quadratic, its graph is a parabola
and any zeros will be symmetric about the vertex which
will also be where f”(x) = 0.
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(1 + ae~™)(0) — (c)(—abe™™)
(1 + ae~™)?
_ abce ™
1+ ae ™2

abwbx
(™ + a)?

51. (a) f'(x) =

so the sign of f’(X) is the same as the sign of abc.

_ (" + a)%(ab’ce™) — (abce™)2(e™ + a)(be™)
(€™ + a)*
_ (" + a)(ab’ce™) — (abce™)(2be™)
€™+ a)?
_ _ab%e™(Ee™ - a)
(™ + a)®

(b) (¥

Since a > 0, this changes sign when x = InTa dueto

the e™ — a factor in the numerator, and f (x) has a point
of inflection at that |ocation.

52. (a) f'(X) = 4ax® + 3bx? + 2cx + d
f7(x) = 12ax? + 6bx + 2c
Since f”(x) is quadratic, it must have 0, 1, or 2 zeros. If
f"(x) has 0 or 1 zeros, it will not change sign and the
concavity of f(x) will not change, so there is no point
of inflection. If f”(x) has 2 zeros, it will change sign
twice, and f (X) will have 2 points of inflection.

(b) If f has no points of inflection, then f”(x) has 0 or 1
zeros, so the discriminant of f”(x) is = 0. This gives
(6b)2 — 4(12a)(2¢c) < 0, or 3b? < 8ac.

If f has 2 points of inflection, then f"(X) has 2 zeros and
the inequality is reversed, so 3b% > 8ac. In summary, f
has 2 points of inflection if and only if 30% > 8ac.

m Section 4.4 Modeling and Optimization
(pp- 206—-220)

Exploration 1 Constructing Cones

1. The circumference of the base of the coneisthe

circumference of the circle of radius 4 minus x, or 87 — X.

Thus, r = 87— X

. Use the Pythagorean Theorem to find h,

and the formula for the volume of a cone to find V.

2. The expression under the radical must be nonnegative, that

a2
is, 16 — (?) = 0.

T

Solving thisinequality for x gives: 0 < x =< 167r.

AN

[0, 164] by [—10, 40]
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3.

4,

5.

The circumference of the original circle of radius 4 is 8.
Thus, 0 = x < 8.

[~

[0, 8] by [—10, 40]

The maximum occurs at about X = 4.61. The maximum
volume is about V = 25.80.

Start Wlth == 2—77 hi + T2 compute I ang I

dx 3 d dx dx’
substitute these values in d— set vl 0, and solve for x to
obtain x = 8= VO™ \/6)77 ~ 4.61.
ThenV = 128”\[ ~ 25.80.

Quick Review 4.4

1

5.
6.
7.

8.

V=ZIm%h=1
3 3

y' =3x% — 12x + 12 = 3(x — 2)?
Sincey’ = Oforal x(andy’ > 0for x # 2),yis
increasing on (—, ) and there are no local extrema.

LY =62+ 6x — 12 = 6(x + 2)(x — 1)

y'=12x+ 6

The critical pointsoccur at x = —2or x = 1, sincey’ =0
at these points. Sincey”(—2) = —18 < 0, the graph has a
local maximum at x = —2. Sincey”(1) = 18 > 0, the graph
has alocal minimum at x = 1. In summary, thereis aloca
maximum at (—2, 17) and alocal minimum at (1, —10).

m(5)(8) = 237 om®

V = 7r?h = 1000

SA = 27rh + 2712 = 600

Solving the volume equation for h givesh = &?20.
kul

Substituting into the surface area equation gives
20rOO + 2712 = 600. Solving graphically, we have
r=—1114,r = 4.01, or r = 7.13. Discarding the negative

vaue and using h = @ to find the corresponding values
7T

of h, the two possihilities for the dimensions of the cylinder
are:

r = 4.01 cmandh = 19.82 cm, or,

r=713cmandh= 6.26 cm.

Sincey = sinxisan odd function, sin (—a) = —sin a.
Sincey = cos x is an even function, cos (—a) = cos a.
sin(m — @) = sin7 c0Sa — COS 7 Sin «
=0cosa — (-1 sna
=sna
COST COSa + Sinw Sina
(=) cosa +0sna
= —COoS«

cos (7 — «)

10. X + y_:
9

9. x2+y2=4andy = V3x
X2+ (Va2 =4
X2+ 3x% =4
42 =4
X =1

Sincey = V/3x, the solutions are:
x=1landy= V3, or, x = —landy= -V3.
In ordered pair notation, the solutions are (1, \/_) and

(-1, -V3).

LS andy=x+3

lan
x (x+3)
4 9

Ox% + 4(x + 3)° = 36

4

9x2 + 4x% + 24x + 36 = 36

13x% + 24x =0
X(13x + 24) =
x=0o0rx= _2
13
Sincey = x + 3, the solutions are:
x=0andy=3,0r,x= fﬁandy=E.
13 13
In ordered pair notation, the solutions are
(©, 3) and (—ﬁ, E).
13 13

Section 4.4 Exercises
1. Represent the numbers by x and 20 — x, where 0 = x = 20.

(@) The sum of the squaresis given by
f(X) = X% + (20 — X)2 = 2x% — 40x + 400. Then
f'(X) = 4x — 40. The critical point and endpoints occur
ax=0,x=10,and x = 20. Thenf(0) =
f(10) = 200, and f (20) = 400. The sum of the squares
is as large as possible for the numbers 0 and 20, and is
as small as possible for the numbers 10 and 10.

Graphical support:

N

Hiniraur
H=in

o L e, -] ] P —

[0, 20] by [0, 450]

(b) The sum of one number plus the square root of the
other isgiven by g(x) = x + V20 — x. Then

gx)=1- ﬁ The critical point occurs when

2V20 — x = 1, soZO—x—landx—— Testing the

endpoints and critical point, we find

9(0) = V20 ~ 4.47, g(f) — 8L _ 2025, and

9(20) = 20.



The sum is as large as possible when the numbers are
L and 1 (summing LI \/1) and isas small as

4 4 4 4
possible when the numbers are 0 and 20

(summing 0 + 'V 20).
Graphical support:

/

Haxiraura
w=18.7E Y2025

[0, 20] by [—10, 25]

2. Let x and y represent the legs of the triangle, and note that

0<x<5 Thenx?+y?>=25s0y= V25— x? (since

y > 0). TheareaisAz%xy:%x 25 — X%, 50

dA _ 1 1 1 2
=y = (—2¢) + V25— x
dx 22\/25—x2( )*3

_ B-2

2V 25 — %2

The critical point occurs when 25 — 2x? = 0, which means

X = , (since x > 0). This value corresponds to the

5
V2

. . dA 5
_— > X< =
largest possible area, since e Ofor 0 < x 75 and

dA 5 5
— < 0for— < x < 5. When x = —, we have
dx V2 V2

52_ 5
y= 25—(—) =—and

V2l V2

2

A= %xy = %(%) = 2745. Thus, the largest possible areais
% cm?, and the dimensions (legs) arei cm by S cm.
4 V2 V2

Graphical support:

Haxiraum
n=3. 5305338 YSE.2D

[0,5] by [-2,7]

. Let x represent the length of the rectangle in inches (x > 0).

Then the width is 1—5 and the perimeter is

P(X) = 2(x + %) -+ 2

X

Since P'(x) = 2 — 32x 2 = @ the critical point
occursat X = 4. Since P'(x) < 0for 0 < x < 4 and
P’(x) > O for x > 0, this critical point corresponds to the
minimum perimeter. The smallest possible perimeter is
P(4) = 16 in., and the rectangl€e's dimensions are

4in. by 4in.
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Graphical support:

"

Hinirurm
H=y

W=1E

[0, 20] by [0, 40]

. Let x represent the length of the rectangle in meters

(0 < x < 4). Thenthewidthis4 — x and the areaiis

A(X) = X(4 — X) = 4x — x2. Since A'(X) = 4 — 2x, the
critical point occurs at x = 2. Since A’(x) > 0 for
0<x<2andA'(x) < 0for2 < x< 4, thiscritical point
corresponds to the maximum area. The rectangle with the
largest areameasures2 mby 4 — 2 = 2m, so it isa square.

Graphical support:

Hazirum
n= =4

[0, 4] by [—15, 5]

. (@) Theequation of line ABisy = —x + 1, so the

y-coordinate of P is —x + 1.

(b) AX) = 2x(1 — x)

(c) SinceA'(x) = %(Zx — 2x%) = 2 — 4x, the critical point
occurs at X = % Since A'(x) >0for0 < x < % and
A'(X) <0 for% < x < 1, thiscritical point corresponds
to the maximum area. The largest possible areais
A(%) = % square unit, and the dimensions of the

rectangle are% unit by 1 unit.

Graphical support:

Haximur
=k =5

[0, 1] by [—0.5, 1]

. If the upper right vertex of the rectangle is located at

(x, 12 — x?) for 0 < x < V12, then the rectangle’s
dimensions are 2x by 12 — x? and the areais

A(X) = 2x(12 — x?) = 24x — 2x3. Then

A'(X) = 24 — 6x° = 6(4 — x?), so the critical point
(for0<x< \/E) occurs at x = 2. Since A’(x) > 0 for
0<x<2andA'(X) < 0for 2 < x < V12, this critical
point corresponds to the maximum area. The largest
possible areais A(2) = 32, and the dimensions are 4 by 8.

Graphical support:

Hazxirura
H=e V=32

[0, V12] by [—10, 40]
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7. Let x be the side length of the cut-out square (0 < x < 4).
Then the base measures 8 — 2xin. by 15 — 2xin.,
and the volume is
V(X) = X(8 — 2X)(15 — 2X) = 4x® — 46x% + 120x. Then
V/(X) = 12x% — 92x + 120 = 4(3x — 5)(x — 6). Then the
critical point (in 0 < x < 4) occurs at X = g Since
V'(X) >0for0 < x<gandV’(x) < Oforg< X < 4, the
critical point corresponds to the maximum volume.

) - 24_50 ~ 90.74 in3, and the

The maximum volume is V(g
dimensions are% in. by 1—; in. by 3—; in.

Graphical support:

Haxirurm
w=1.6BBEE67 Y=90.740741

[0, 4] by [—25, 100]

8. Note that the values a and b must satisfy a2 + b? = 202
and so b = V400 — a®. Then the areais given by

A:%ab:% \/400 — a2 for 0 < a < 20, and

dA _ 1 1

1 p
= = = - - @ p— + = —
. Za(z 400_a2)( 2a) + 1200 - a

2 2

—a‘+ (400 — a —a? . .

_ a0 2007"". The critical point occurs
2V 400 — a® V400 — a2

when a2 = 200.Sinceg—’:> 0for 0 < a< V200 and

3—’2 < 0for V200 < a < 20, this critical point corresponds
to the maximum area. Furthermore, if a = V 200 then

b = V400 — a% = V200, so the maximum area occurs

whena=h.

Graphica support:

Haxiraum
n=idibzize V=100

[0, 20] by [—30, 110]

9. Let x be the length in meters of each side that adjoins the
river. Then the side parallel to the river measures
800 — 2x meters and the areais
A(X) = x(800 — 2x) = 800x — 2x° for 0 < x < 400.
Therefore, A’(X) = 800 — 4x and the critical point occurs at
x = 200. Since A’'(x) > 0for0 < x<200and A'(x) <O
for 200 < x < 400, the critical point corresponds to the
maximum area. The largest possible areais
A(200) = 80,000 m? and the dimensions are 200 m
(perpendicular to the river) by 400 m (parallel to the river).

Graphical support:

Hazirura
w=ein F=A0000

[0, 400] by [—25,000, 90,000]

10. If the subdividing fence measures x meters, then the

pea patch measures x m by 2—)1(6 m and the amount of fence

needed isf(x) = 3x + 22—)1(6 = 3x + 432x L. Then

f'(x) = 3 — 432x~2 and the critical point (for x > 0)
occursat x = 12. Sincef’(x) < 0for 0 < x < 12 and

f'(x) > 0 for x > 12, the critical point corresponds to the
minimum total length of fence. The pea patch will measure
12 m by 18 m (with a 12-m divider), and the total amount
of fence needed isf(12) = 72 m.

Graphica support:

Hiniriur
n=iz

| ——

[0, 40] by [0, 250]

11. (a) Let x bethelength in feet of each side of the square
base. Then the height is % ft and the surface area
(not including the open top) is
X =2 + 4x(i12°) = %2 + 20001, Therefore,

3 _
2% and the critica

S'(X) = 2x — 2000x 2 =
point occurs a x = 10. Since S'(x) < 0for 0 < x < 10
and S'(x) > 0for x > 10, the critical point corresponds
to the minimum amount of steel used. The dimensions

should be 10 ft by 10 ft by 5 ft, where the height is 5 ft.

(b) Assume that the weight is minimized when the total
area of the bottom and the four sides is minimized.



12.

13.

14.

1125

(a) Notethat x%y = 1125, s0y =
¢ = 5(x% + 4xy) + 10xy
= 5x? + 30xy
= 5x2 + 30X (1125)

= 5x% 4 33,750x !

3 _
= 10x — 33,750x 2= w

The critical point occurs at X = 15. Smce% < Ofor

0<x<15 and & > 0for x > 15, the critical point
corresponds to the minimum cost. The values of x and
yarex=15ftandy = 5ft.

(b) The material for the tank costs 5 dollars/sq ft and the
excavation charge is 10 dollars for each sguare foot of
the cross-sectional area of one wall of the hole.

Let x be the height in inches of the printed area. Then the
width of the printed area isS—X0 in. and the overall

dimensions are x + 8 in. by % + 4 in. The amount of

paper used is
AX) = (x + 8)(5—)? + 4) —ax+ 82+ % in2. Then
2_
A(X) =4 — 400x 2 = 4()(—2100) and the critical point
X

(for x > 0) occurs at x = 10. Since A’(x) < O for
0<x< 10and A’(x) > 0 for x > 10, the critical point
corresponds to the minimum amount of paper. Using
X+ 8 ands—x0 + 4 for x = 10, the overall dimensions are

18 in. high by 9in. wide.

(@) s(t) = —16t% + 96t + 112
v(t) =s'(t) = —32t + 96
Att = 0, the velocity is v(0) = 96 ft/sec.

(b) The maximum height occurs when v(t) = 0, when
t = 3. The maximum height is s(3) = 256 ft and it
occursat t = 3 sec.

(c) Notethat
s(t) = —16t2 + 96t + 112 = —16(t + 1)(t — 7),
sos=0at= —1ort= 7. Choosing the positive
value of t, the velocity whens = Qis
v(7) = —128 ft/sec.

15.

16.

17.
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We assume that a and b are held constant. Then

A(6) = Labsin 0 and A’(6) = Lab cos 0. The critical point
2 2

(for0< 6 < ) occursat 6 = % Since A'(9) > O for

0<9< % and A'(p) < Ofor%< 6 < 7, the critical point

corresponds to the maximum area. The angle that

maximizes the triangle’'s areais 6 = % (or 90°).

Let the can have radiusr cm and height h cm. Then

1000, soh = @ The area of material used is

77
A= ar? + 2mrh = 7r2 + &= 2000

r
dA —o _ 2ar3 — 2000
=L =

o 27r — 2000r . The critical point

r
occursat r = J29%0 — 10713 ¢, Snce?j—A<0for
T

0<r< 107 13 and(;—/:‘

aréh =

> 0forr > 107 Y3, the critical
point corresponds to the least amount of material used and
hence the lightest possible can. The dimensions are
r=107 Y3~ 6.83cmandh = 107 Y3~ 6.83cm. In
Example 2, because of the top of the can, the “best” design

isless big around and taller.

Note that 7r 1000
A=82+ 27rh =8 +@so
z—/;\ = 16r — 2000r 2 = w The critical point

3
occursatr = V125 = 50m.SinceZ—¢<OforO< r<5

and ;—'V: > 0 forr > 5, the critical point corresponds to the
least amount of aluminum used or wasted and hence the
most economical can. Thedimensionsarer = 5 cm and

_ 40

—, sotheratioof htor |s§tol
7T o
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15;2)(in.,szothe

18. (@) The base measures 10 — 2xin. by

volume formulais

X(10 - 29(15 - 29 _
2

(b) We requirex > 0, 2x < 10, and 2x < 15. Combining
these requirements, the domain is the interval (0, 5).

RN

[0, 5] by [—20, 80]

V(X) = X3 — 25x2 + 75x.

©

Haxirmurm

#=1.96167>9 Y=g6.019118
[0, 5] by [—20, 80]

The maximum volume is approximately 66.02 in® when

x=1.96in.

(d) V'(X) = 6x% — 50x + 75

The critical point occurs when V'(x) = 0, at

w— 50* V(=502 — 4(6)(75) _ 50 = V700

2(6) 12
_ 25i_65\f7 that is, x ~ 1.96 or x ~ 6.37. We discard

the larger value because it is not in the domain. Since

V"(x) = 12x — 50, which is negative when x =~ 1.96,
the critical point corresponds to the maximum volume.

The maximum volume occurs when
«_ 25-5V7
6

19. (a) The“sides’ of the suitcase will measure 24 — 2xin. by
18 — 2xin. and will be 2x in. apart, so the volume
formulais
V(X) = 2x(24 — 2X)(18 — 2x) = 8x3 — 168x? + 864x.

(b) We requirex > 0, 2x < 18, and 2x < 24. Combining
these requirements, the domain is the interval (0, 9).

RN

[0, 9] by [—400, 1600]

=~ 1.96, which confirms the result in (c).

(©

Haziraur
WEEZAYYYET  Y=1308.9847
[0, 9] by [—400, 1600]

The maximum volume is approximately 1309.95 in3
when x = 3.39in.

20.

(d) V'(X) = 24x® — 336x + 864 = 24(x? — 14x + 36)
The critical point is at

_ 14= V(-147 - 41)(36) _ 14+ V52 _ 7+ V3,
2(1) 2

that is, x = 3.39 or x = 10.61. We discard the larger

value because it is not in the domain. Since

V"(X) = 24(2x — 14), which is negative when x = 3.39,

the critical point corresponds to the maximum volume.

The maximum value occurs at x = 7 — V13 = 3.39,

which confirms the resultsin (c).

(&) 8x® — 168x® + 864x = 1120
8(x® — 21x% + 108x — 140) = 0
8x—2(x—5x—-14) =0
Since 14 is not in the domain, the possible values of x
aex=2in.orx=5in.

(f) The dimensions of the resulting box are 2xin.,
(24 — 2x) in,, and (18 — 2x) in. Each of these
measurements must be positive, so that gives the
domain of (0, 9).

X

} 6 mi {
= x—t 6—X I Village
|
o 1
J_ 1 /\4+x2miles
Jane

Let x be the distance from the point on the shoreline nearest
Jane's boat to the point where she lands her boat. Then she
needs to row V4 + x? mi at 2 mph and walk 6 — x mi at

5 mph. The total amount of time to reach the villageis

V4 2 _
f(x)=%+ 65Xh0urs(05x56).Then
1 1 1 X 1 .
fr==-—=— (%) —==—=__ — = Solving
22V4 + %2 5 2Va+x2 O
f’'(x) = 0, we have:
o x _1
2Va+x2 5
5x = 2V4 + x?
25x2 = 4(4 + X9
21x2 = 16
X = ti
V21

We discard the negative value of x because it is not in the

domain. Checking the endpoints and critical point, we have

£(0) = 2.2, f(i> ~ 2.12, and f(6) ~ 3.16. Jane should
Va1

land her boat —2— ~ 0.87 miles down the shoreline from

Va1

the point nearest her boat.



21.

22.

23.

If the upper right vertex of the rectangle is located at
(%, 4 cos 0.5x) for 0 < x < 17, then the rectangle has width
2x and height 4 cos 0.5%, so the area is A(X) = 8x cos 0.5x.
Then A’(x) = 8x(—0.5sin 0.5x) + 8(cos 0.5x)(1)

= —4xsin 0.5x + 8 cos 0.5x.
Solving A’(x) graphically for 0 < x < r, we find that
X = 1.72. Evaluating 2x and 4 cos 0.5x for x = 1.72, the
dimensions of the rectangle are approximately
3.44 (width) by 2.61 (height), and the maximum areais
approximately 8.98.

Let the radius of the cylinder ber cm, 0 < r < 10. Then
the height is 2V/100 — r? and the volume is
V(r) = 27r?V100 — r? cm®. Then

V(1) = 2ar (2 W)( 2r) + (2100 — r9)(2r)

—27t3 + 471 (100 — r?)
B V100 — 12
271 (200 — 3r?)
V100 — r2

The critical point for 0 < r < 10 occurs at

r= / —10\[ Since V'(r) > 0O for

O<r<10\[andV(r)<Ofor10\[<r<lO the
critical point corresponds to the maximum volume. The

dimensionsarer = 10\/z =~ 8.16 cm and

=20 - 11.55 cm, and the volume is

3
40007 _ 2418.40 cm?.
3V3

@ f'X=x(-eMN+eX(D=eX1-X
The critical point occursat x = 1. Sincef’(x) > O for
O0=x<1landf’(x) < Ofor x> 1, thecritica point
corresponds to the maximum value of f. The absolute
maximum of f occursat x = 1.

(b) To find the values of b, use grapher techniques to solve
xe X = 0.1e7%1 xe™ = 0.2e7%2, and so on. To find
the values of A, calculate (b — a)ae™?, using the
unrounded values of b . (Use the list features of the
grapher in order to keep track of the unrounded values
for part (d).)

a| b A
0.1]3.71|0.33
0.2]|286|0.44
0.3]2.36|0.46
0.4|2.02|0.43
05|1.76|0.38
0.6|155|0.31
0.7]1.38|0.23
0.8]1.23|0.15
0.9]1.11|0.08
1.0{1.00 | 0.00
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©

[0, 1.1] by [-0.2, 0.6]
(d) Quadratic:
~ —0.91a% + 0.54a + 0.34

/ 4
[—0.5, 1.5] by [-0.2, 0.6]

Cubic:
A=~ 174a%— 3.78a% + 1.86a + 0.19

A,

/

[—0.5, 1.5] by [—0.2, 0.6]

Quartic:
A~ —1.92a* + 5.96a% — 6.87a% + 2.71a + 0.12

)

/ N

[-0.5, 1.5] by [—0.2, 0.6]
(e) Quadratic:

~

HUIIMUN
n=.28E7yEeE Y= 41EEEENZ

[-0.5, 1.5] by [—0.2, 0.6]

According to the quadratic regression equation, the
maximum area occurs at a = 0.30 and is approximately
0.42.

Cubic:

.

Eg.x:m"srgusu Y= HEZHE4ZY
[-0.5, 1.5] by [—0.2, 0.6]

According to the cubic regression equation, the
maximum area occurs at a = 0.31 and is approximately
0.45.

Quartic:

AN

T
Eg.xzi??uﬂﬁ'i Y=.450BEC 62
[-0.5, 1.5] by [—0.2, 0.6]
According to the quartic regression equation the
maximum area occurs at a = 0.30 and is approximately
0.46.
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24.

25.

26.

27.

(@) f'(x) isaquadratic polynomial, and as such it can have
0, 1, or 2 zeros. If it has 0 or 1 zeros, then its sign
never changes, so f(x) has no local extrema.

If f'(X) has 2 zeros, then its sign changes twice, and
f(X) has 2 local extrema at those points.
(b) Possible answers:
No local extrema y = x5,
2 local extrema: y = x3 — 3x

Let x be the length in inches of each edge of the square

end, and let y be the length of the box. Then we require

4x + y = 108. Since our goal is to maximize volume, we

assume 4x + y = 108 and so y = 108 — 4x. The volume is

V(X) = x3(108 — 4x) = 108x? — 4x°, where 0 < x < 27.

Then V' = 216x — 12x? = —12x(x — 18), so the critical

point occurs at x = 18 in. Since V'(x) > 0for 0 < x < 18

and V'(x) < Ofor 18 < x < 27, the critical point

corresponds to the maximum volume. The dimensions of
the box with the largest possible volume are

18 in. by 18 in. by 36 in.

Since 2x + 2y = 36, we know that y = 18 — x. In part (a),
the radius iszi and the height is 18 — x, and so the

e
volume is given by

2
7r?h = W(L) (18 — x) = —-x%(18 — X). In part (b), the

21 4

radius is x and the height is 18 — X, and so the volume is
given by 7r?h = 7x3(18 — x). Thus, each problem requires
us to find the value of x that maximizes f (x) = x%(18 — X)
in theinterval 0 < x < 18, so the two problems have the
same answer.
To solve either problem, note that f(x) = 18x? — x3 and so
f/(X) = 36x — 3x%> = —3x(x — 12). The critical point
occursat X = 12. Sincef’(x) > 0for 0 < x < 12 and
f'(X) < 0for 12 < x < 18, the critical point corresponds to

the maximum value of f (x). To maximize the volumein
either part (a) or (b), letx=12cmandy = 6 cm.

Notethat h? + r2 = 3and sor = V'3 — hZ Then the
volumeisgiven by V = %rzh = %(3 —h?)h=7h - %h3
for 0 < h<\/§,andso;—‘\h/= 7 — mh? = m(1 — h?). The
critical point (for h > 0) occursat h = 1. Since% > 0 for
0<h< 1and3—\r< <0Oforl<h< \/§, the critical point
corresponds to the maximum volume. The cone of greatest

volume has radius V/2 m, height 1 m, and volume%w m>,

29. f'(x) = 2x — ax Z

28. (a) Werequire f(x) to have a critical point at x = 2. Since

f/(x) = 2x — ax 2, wehavef’(2) = 4 — % and so our
requirement isthat 4 — Z = 0. Therefore, a = 16. To
verify that the critical point corresponds to alocal
minimum, note that we now have f’(x) = 2x — 16x 2
andso f"(x) = 2 + 32x~3, so f"(2) = 6, which is
positive as expected. So, use a = 16.

(b) Werequiref”(1) = 0. Sincef”(x) = 2 + 2ax™3, we
have f"(1) = 2 + 2a, so our requirement is that
2+ 2a= 0. Therefore, a = —1. To verify that x = 1is
in fact an inflection point, note that we now have
f(x) = 2 — 2x 3, which is negative for 0 < x < 1 and
positive for x > 1. Therefore, the graph of f is concave
down in the interval (0, 1) and concave up in the
interval (1, «), So, usea = —1.

72:2x37a

, S0 the only sign change in
3

f'(x) occurs at x = (g) , where the sign changes from

negative to positive. This means there is alocal

minimum at that point, and there are no local maxima.

30. (a) Notethat f'(x) = 3x* + 2ax + b. We require

f'(=1) =0andf’(3) = 0, whichgive3—-2a+b=0
and 27 + 6a + b = 0. Subtracting the first equation
from the second, wehave 24 + 8a=0andsoa = —3.
Substituting into the first equation, we have 9 + b = 0,
so b = —9. Therefore, our equation for

f(x) isf(x) = x3 — 3x% — 9x. To verify that we have a
local maximum at x = —1 and alocal minimum at

X = 3, note that

f/(x) = 3x> — 6x — 9 = 3(x + 1)(x — 3), which is
positive for x < —1, negative for —1 < x < 3, and
positive for x > 3. So, usea= —3and b = —9.

Note that f'(X) = 3x% + 2ax + band f"(X) = 6x + 2a.
We requiref’(4) = 0 and f"(1) = 0, which give

48 + 8a + b = 0and 6 + 2a = 0. By the second
equation, a = —3, and so the first equation becomes
48 — 24 + b = 0. Thusb = —24. To verify that we
have alocal minimum at x = 4, and an inflection

point at x = 1, note that we now have f"(x) = 6x — 6.
Since f” changes sign at x = 1 and is positive at x = 4,
the desired conditions are satisfied. So, usea = —3 and
b= -24.

(b

~



31. Refer to theillustration in the problem statement. Since

X% + y? = 9, we have x = V9 — y2. Then the volume of
the coneis given by

V = —7r = —mX (y 3)

= 2@~y + 9
=30V -3+ 9y +20),
for —3<y<3.
Thus @Y = T3~ by + 9 = ~m(y’ + 2y - 3)

dy

= —a(y + 3)(y — 1), so the critical pointin

theinterva (-3, 3) isy = 1. Since%/ >0for -3<y<1

and % < 0for 1 <y < 3, the critical point does

correspond to the maximum value, which is V(1) = ?’ZTW

cubic units.

32. (a) Notethat w? + d? = 122, sod = V144 — w?. Then we

may write S = kwd? = kw(144 — w?) = 144kw — kw®

forO<w< 12,

so% = 144k — 3kw? = —3k(w? — 48). The critical

point (for 0 < w < 12) occursat w = V48 = 4V/3,

Since§>0for0<w<4\/§and§<0for
dw dw

4V3 < w < 12, the critical point corresponds to the

maximum strength. The dimensions are 4V/3in. wide

by 4V/6 in. deep.

(b)

[0, 12] by [—100, 800]

The graph of S= 144w — w? is shown. The maximum
V3 =69,

strength shown in the graph occursat w = 4
which agrees with the answer to part ().

©

[0, 12] by [—100, 800]

The graph of S= d?\/144 — d? is shown. The
maximum strength shown in the graph occurs at
d=4V6~ 9.8, which agrees with the answer to part
(a), and its value is the same as the maximum value
found in part (b), as expected.

Changing the value of k changes the maximum

strength, but not the dimensions of the strongest beam.

The graphs for different values of k look the same
except that the vertical scaleis different.
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33. (a) Notethat w? + d? = 122, so d = V144 — w2 Then we

(b)

©

34. (a)

(b

~

may write S = kwd® = kw(144 — w2)3’2, .

as_

3 N7 N,
™ kw-§(144 wWA)Y2(—2w) + k(144 — wA)¥(1)

= (kKV144 — w?)(—3w? + 144 — w?)

= (—4kV 144 — wH)(w? — 36)
The critical point (for 0 < w < 12) occurs at w = 6.
ds

. ds
= > <w< =<
Since v Ofor0O<w< 6and o 0 for
6 < w < 12, the critical point corresponds to the
maximum stiffness. The dimensions are 6 in. wide by

6V/3 in. deep.

[0, 12] by [—2000, 8000]

The graph of S= w(144 — w?)¥? is shown. The
maximum stiffness shown in the graph occurs at w = 6,
which agrees with the answer to part (a).

rd

[0, 12] by [—2000, 8000]

The graph of S= d®V144 — d? is shown. The
maximum stiffness shown in the graph occurs at
d=6V3~ 104 agrees with the answer to part (a),
and its value is the same as the maximum value found
in part (b), as expected.

Changing the value of k changes the maximum
stiffness, but not the dimensions of the stiffest beam.
The graphs for different values of k look the same
except that the vertical scaleis different.

v(t) = s'(t) = —107 sin wt

The speed at time t is 10a7]sin #t|. The maximum speed
is 107 cm/sec and it occurs at t = % t= g t= g and
t= % sec. The position at these timesiss = 0 cm (rest
position), and the acceleration

at) = v/(t) = —1072 cos 7t is 0 cm/sec? at these

times.

Since a(t) = —1072 cos 7t the greatest magnitude of
the acceleration occursatt = 0,t = 1,t=2,t = 3, and
t = 4. At these times, the position of the cart is either
s= —10cmor s = 10 cm, and the speed of the cart is
0 cm/sec.
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35. Sinc % = —2sint + 2 cost, the largest magnitude of the
current occurswhen —2sint + 2 cost = 0, or
sint = cost. Squaring both sides gives sin®t = cos? t, and

we know that sint + cos?t = 1, sosin®t = cos’t = =

Thus the possible values of t are% 3777 5;
Eliminating extraneous solutions, the solutions of

and so on.

sint =cost aret = % + kar for integers k, and at these
times fi| = [2 cost + 2 sint| = 2V/2. The peak current is

2V/2 amps.

36. The square of the distanceis
D) = (x—§>2+ (Vx+ 02 =x2— 2x+%
so D'(X) = 2x — 2 and the critical point occursat x = 1.
SinceD'(X) < O0forx<1andD’(x) > 0for x> 1, the
critical point corresponds to the minimum distance. The

minimum distanceis V D(1) = \/E

37. Cdculus method:
The square of the distance from the point (1, \/5) to
(% \/ﬂ) is given by
D) = (x — )2+ (V16 — X2 — V/3)?
=x2—2x+1+16—x2—2V48 -3 +3
= —2x+ 20 — 2\/@. Then

' _ 6Xx
D' =-2 2V/48 — 342 AU Vag =32
Solving D'(x) = 0, we have:

6x = 2V48 — 3x?
36x2 = 4(48 — 3%
9x% = 48 — 3x?
12x% = 48
X==2

We discard x = —2 as an extraneous solution, leaving
x=2.SinceD’'(x) < 0for —4 <x<2andD’'(x) > Ofor
2 < x < 4, the critical point corresponds to the minimum
distance. The minimum distance is \/@ =2

Geometry method:

The semicircle is centered at the origin and has radius 4.
The distance from the origin to (1, \/5) is

V12 + (V/3)2 = 2. The shortest distance from the point to
the semicircle is the distance along the radius containing
the point (1, \/5). That distanceis4 — 2 = 2.

38. No. Since f(x) is a quadratic function and the coefficient of
x? is positive, it has an absolute minimum at the point
wheref’(x) = 2x — 1 = 0, and that point is(%, %)

39. (a) Becausef(x) is periodic with period 2.

(b) No. Sincef(x) is continuous on [0, 2], its absolute
minimum occurs at a critical point or endpoint.
Find the critical pointsin [0, 27]:

f'X) = —4sinx—2sn2x =0
—4snx—4sinxcosx =0
—4(sinx)(1 + cosx) = 0
snx =0orcosx = —1
X =0, 7, 27
The critical points (and endpoints) are (0, 8), (, 0),
and (27, 8). Thus, f(X) has an absolute minimum at
(7r, 0) and it is never negative.
2sint =sin2t
2sint =2sintcost
2(sint)(1 — cost)=0
sint =0orcost=1
t = ki, where k is an integer
The masses pass each other whenever t is an integer
multiple of 7 seconds.

(b) The vertica distance between the objectsis the
absolutevalue of f(X) = sin2t — 2sint.
Find the critical pointsin [0, 27]:

40. (a)

f'(X) =2cos2t—2cost =0
2(2cos’t — 1) — 2cost =0
2(2cos’t —cost— 1) =0

2(2cost + 1)(cost — 1) =0

cost = —lorcostzl
2
t_2_7"4_7" 0, 27
3 3

The critical points (and endpoints) are (0, 0),

(2—”, —3\/5’), (4—” —3\f) and (27, 0)
3 2 3 2
The distance is greatest when t = 2%Tsecand when
t= 4?” sec. The distance at those timesis —— 3V3 meters.
41. (a) sint:sin(t+§)
sint = sintcos% + costsin%
sint:%sintJr?cost
1sint :ﬁcost
2 2
tant = V3
Solving for t, the particles meet at t = %sec and at
t=7 e,
3



(b) The distance between the particles is the absolute value

of F(t) = sjn<t + %) —sint= ?cost —%s‘nt. Find

the critical pointsin [0, 27]:

f'{t) = fésjntf%cost =0
—ﬁ int = 1c:ost
2 2
1
tant = ——
V3
The solutions aret = %77 andt = HTW’ so the critical
. 5 117 .
points are at (?, —1) and (T’ 1), and the interval

endpoints are at (0, %) and (277, %) The particles

arefarthestapartatt:%secandattzl%sec,and

the maximum distance between the particlesis 1 m.

(c) We need to maximize f'(t), so we solve f"(t) = 0.

fr(t) = —% cost + %sjnt =0

1sint :ﬁcost
2 2

Thisis the same equation we solved in part (a), so the
solutions are t = %sec andt = %” Sec.

For the function y = f'(t), the critical points occur at

(% —1) and (%77 1), and the interval endpoints are at

(o, —%) and (277, —%)

Thus, |£(9)]is maximized at t = 7 and t = % But

these are the instants when the particles pass each
other, so the graph of y = [f(t)| has corners at these
points and %\ f(t)| is undefined at these instants. We
cannot say that the distance is changing the fastest at
any particular instant, but we can say that near t = % or
t= 4?” the distance is changing faster than at any other

timein the interval.
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42. The trapezoid has height (cos 0) ft and the trapezoid bases

measure 1 ft and (1 + 2 sin 6) ft, so the volume is given by
V(o) = %(cos 0)(1+ 1+ 25in 6)(20)
= 20(cos 6)(1 + sin 6).
Find the critical pointsfor 0 < 6 < %:
V’(0) = 20(cos #)(cos 0) + 20(1 + sin 6)(—sinH)= 0
20cos? 9 — 20sinf — 20sin9 = 0
20(1 — sin®@) — 20sin@ — 20sin’6 = 0
—20(2si’ 6 +sinf — 1) =0
—-20(2sinf — 1)(snf + 1) =0

sin0=%orsin0= -1

The critical point is at (% 15\/§>. Since V'(6) > O for
0=6< % and V'(0) < Ofor% <h< g the critical point
corresponds to the maximum possible trough volume. The

volume is maximized when 6 = %

43.(ad p C

R

Sketch segment RS as shown, and let y be the length of
segment QR. Note that PB = 8.5 — x, and so

QB = VX% — (85— )2 = V85(2x — 85).

Also note that triangles QRS and PQB are similar.

QR _ PQ
RS QB
Y - X
85 /852« - 85)
y2 _ X2
85° 85(2x — 85)
8.5x2
Y =585
L2=x2+ yz
LZ2=x2+ 85¢*
2x — 85
L2 = X3(2x — 8.5) + 8.5x?
2x — 85
L2 = 23

2x— 85
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43. continued

233
2x — 85
y = 11, the approximate domain of f is5.20 = x = 8.5.

(b) Notethat x > 4.25, and let f(X) = L2 = Since

Then

(2x — 85)(6x%) — (x)(2) _ x*(8x — 51)
(2x — 8.5)? (2x — 8.5)?

For x > 5.20, the critical point occurs at

_5l

f/(x) =

X = 6.375 in., and this corresponds to a minimum
value of f(x) becausef’(x) < 0for 520 < x < 6.375
and f'(x) > 0 for x > 6.375. Therefore, the value of x

that minimizes L2isx = 6.375 in.

(c) Theminimum value of L is

2(6.375)°

2020 < 11.04in.
2(6.375) — 85

44. SinceR = M2<% - M) = %MZ - %M3, we have

3
3—3 = CM — M2 Let f(M) = CM — M2 Then
f'(M) = C — 2M, and the critical point for f occurs at
M = %.This value corresponds to a maximum because

f/(M) > Ofor M <%andf’(M) <0forM > % The value

of M that maximiz&eﬁ isM = E.
dMm 2
45. The profit is given by
P(X) = (n)(x — ¢) = a+ b(100 — xX)(x — ¢)

= —bx? + (100 + c)bx + (a — 100bc).

Then P'(x) = —2bx + (100 + ¢)b
= b(100 + ¢ — 2x).

The critical point occurs at X = %

=50+ % and this
value corresponds to the maximum profit because
P'(x) > O for x < 50+%and P’(X) < O for x > 50+§.

A selling price of 50 + %Wi” bring the maximum profit.

46. Normal

Let P be the foot of the perpendicular from A to the mirror,
and Q be the foot of the perpendicular from B to the mirror.
Suppose the light strikes the mirror at point R on the way
from Ato B. Let:

a = distance from Ato P

b = distance from B to Q

¢ = distancefrom P to Q

x = distance from P to R
To minimize the time is to minimize the total distance the
light travels going from A to B. The total distance is
D) = VX2 + a2 + V(c — X2 + b?

Then
D'(X) = ——— (2 + L [-2c-X)]
2Vx? + a? 2V(c — x)? + b?
X C—X

V& - V(e — X2+ b?
Solving D'(x) = O gives the equation

X C—X

Vet V(c— X2+ b?

which we will refer to as Equation 1. Squaring both sides,

we have:
x> _ (c—%?
X*+a’>  (c—x?+Db?
X[(c — X2+ b? = (c — X0 + @)

X3(c — X)? + x%b? = (c — X)*%® + (c — x)%a?
x?b? = (c — x)%a®
x?b? = [c? — 2xc + x¥a?
0 = (@ — bAx? — 2a%cx + a’c?
0 = [(a+ b)x — ac][(a — b)x — ac]
ac ac

X = or X =
a+b a—-b

b is an extraneous solution

Note that the value x = —2<

because x and ¢ — x have opposite signs for this value.

ac
+b

The only critical point occurs at x = a



To verify that this critical point represents the minimum
distance, note that

(V2 +ad)(1) - (x)( \/%az)
D"(x) = 2+ a2 -

X211 — (c— =X
(Vie—x?+ (-1 - (c X’<m)

(c—Xx)?+b?

*+ad)-—x
(X2 + a2)3/2

—[(c=x*+ b7 + (c—x?
[(c—x)? + b2

a? b?

T - X7+ 07

which is always positive.

We now know that D(x) is minimized when Equation 1 is
R_QR
AR BR’
right triangles APR and BQR are similar, which in turn

true, or, equivalently, This means that the two

implies that the two angles must be equal.

47. Y — ka — 2k
dx
The critical point occurs at x = Z—i = %’ which represents a
maximum value
2,
because % = —2k, which is negative for all x. The

maximum value of v is

kax — koc? = ka(ﬁ) - k<§)2 _ ke’
2 2 4

48. (@) v=cry?—cr?

;—d\r' = 2cryr — 3cr? = cr(2r, — 3r)
2r
The critical point occursat r = ?0 (Notethat r = Qs
not in the domain of v.) The critical point represents a
2
maximum because% = 2cry — 6er = 2¢(ry — 3r),

X . . . L r
which is negative in the domamEO =r=r,

(b) Wegraphv = (0.5 — r)r2, and observe that the

maximum indeed occurs at v = @0.5 = %

[0, 0.5] by [—0.01, 0.03]

49,

50.

51.

52.
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Revenue:  r(x) = [200 — 2(x — 50)]x = —2x? + 300x
Cost: c(X) = 6000 + 32x
Profit: p(x) = r(x) — c(x)

= —2x% + 268x — 6000, 50 < x < 80

Sincep’(X) = —4x + 268 = —4(x — 67), the critical point
occurs a X = 67. This value represents the maximum
because p”(x) = —4, which is negative for all x in the
domain. The maximum profit occurs if 67 people go on the
tour.

(@) SinceA’'(q) = —kmg ™2 + g the critical point occurs

when ';7”2‘ = g orq= ZkTm This corresponds to the

minimum value of A(q) because A”(q) = 2kmq 3,
which is positive for g > 0.
(b) The new formula for average weekly cost is
B(q) = (k +qbq)m
km hg

=—+bm+cm+
q 2

p—
2

= A(q) + bm
Since B(q) differs from A(q) by a constant, the
minimum value of B(q) will occur at the same g-value

as the minimum value of A(Q). The most economical

quantity is again /ZkTm.

The profit is given by
p(x) = r(x) — c(x)

=6x — (X3 — 6x? + 15x)

= —x3 + 6x% — 9%, for x = 0.
Thenp’(x) = —3x% + 12x — 9 = —3(x — 1)(x — 3), so the
critical points occur at x = 1 and x = 3. Since p’(x) < O for
0=x<1p'(x)>0forl<x< 3 andp’'(x) <Ofor
x > 3, the relative maxima occur at the endpoint x = 0 and
at the critical point x = 3. Since p(0) = p(3) = 0, this
means that for x = 0, the function p(x) has its absolute
maximum value at the points (0, 0) and (3, 0). This result
can also be obtained graphically, as shown.

N

Haxirum
H=z

=0

[0,5] by [-8, 2]
The average cost is given by
a(x) = ixx) = x2 — 20x + 20,000. Therefore,
a’(x) = 2x — 20 and the critical valueis x = 10, which
represents the minimum because a”(x) = 2, which is
positive for all x. The average cost is minimized at a

production level of 10 items.
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53. (@)

According to the graph, y'(0) = 0

(b) According to the graph, y'(—L) =

(©

54. (a)

y(0) =

Now y’(x) =

0,sod=0.

3ax® + 2bx + ¢, so y’(0) implies that
c = 0. Therefore, y(x) = ax® + bx? and

y'(X) = 3ax? + 2bx. Theny(—L) = —aL® + bL?=H
andy’(—L) = 3aL? — 2bL = 0, so we have two linear
equations in the two unknowns a and b. The second

equation givesb = Substltutlng into the first

3aL3 aL®

equation, we have faL3 =H, Jor - = H, so

a= 2%. Therefore, b = 3% and the equation for y is
X 3 X 2

2L e |
L L

2ma — X

H H
y(X) = ZFX?' + SPXZ, or y(x) =

The base radius of the coneisr = and so the

T
2
Va2 —r2= az—(zwa X).

21

=T 27Ta*X)2 a2 — 2ma — x\?
3 21 2w '

heightish =
Therefore,

V(X) = %r

(b) To simplify the calculations, we shall consider the

volume as a function of r:
volume = f(r) = ngVa2 —r?, where0<r < a.

f(r)= %(ﬂm)

= g[rz- zx/ﬁ =2+ (Val—r )(2r)}
_ z[—r3 + 2r(@@% - rz)}
3 VaZ -2
2ar — 3r
gk =1
_ mr(2a® — 3r?)
3Va? - 12

The critical point occurs when r2 = 2% which gives

=Va?-r?= [a? Zi—\/—z Usmg
r aVe dh——,
3

we may now find the values of r and h for the given
values of a.

When a = 4: r:%\/é,h:%\@;
whena=5.r = 5—\/6,h=5—\/§;
3 3
whena:6:r:2\/_ h:2\/_'
whena = 8: r—i h—i

3

©

55. (a)

(b)

Sincer = i and h = i the relationship is

r_

o= V2.

Let X, represent the fixed value of x at point P, so that

P has coordinates (xO, a),

and let m = f'(x,) be the slope of line RT. Then the
equation of line RT is

y = m(x — x)) + a They-intercept of thislineis
m0 — x) +a=a— mx,

and the x-intercept is the solution of

mx, — a
m(x — x) + a=0,0rx= Om

Let O designate the origin. Then
(Area of triangle RST)

= 2(Area of triangle ORT)
. 1(x-intercept of line RT)(y-intercept of line RT)
=2- 1( )(a - mx)

)
_ m(M)
m

oo ]
Substituting x for x,, f'(x) for m, and f(x) for a, we

B '(X)[X B fff?l)r-

have A(x) =

The domain is the open interval (0, 10).

2
Tograph, lety, =f(x) =5+5 /1 - — 100°

y, = f'(x) = NDER(y,), and
_ _ A%
Y = AX) = —y2<x - —) )
Y2

The graph of the area function y, = A(X) is shown

below.

[0, 10] by [—100, 1000]

The vertical asymptotesat x = 0 and x = 10
correspond to

horizontal or vertical tangent lines, which do not form
triangles.



(c) Using our expression for the y-intercept of the tangent line, the height of the triangle is

a-mx=fx) —f'(x) - x

—5+1\/— ———x
2 100—x
1
=5+ \/—+
2\/100—x
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We may use graphing methods or the analytic method in part (d) to find that the minimum value of A(x) occurs at x = 8.66.

Substituting this value into the expression above, the height of the triangle is 15. Thisis 3 times the y-coordinate of the

center of the ellipse.
(d) Part (a) remains unchanged. The domain is (0, C). To graph, note that

f)=B+B /1—X—22=B+Emand
O e e =

Therefore, we have

] B [ B+gm]2

_ f(¥) _
Aw =T (X)[ e B R
CVC? - x?
_ Bx {X_ (BC + BVC? - x)VC? - x? 2
cvez—2| —Bx
1 2 2 2 2 212
=— =B+ (BC+BVC?-x)(VC? -
Bme[ X XX XN
=———=—[Bx?+ BCVC? — x* + B(C? — x9)]?
BCX\/CZ—[ X ( x)
= BC(C + VC2 — x3))2
BCx\/Cz— X [ ( X
_ BC(C+ VC? — x?)?
B XV C2 — x?
2 _ 2 2 _ 2 - 2 2
. V2= xd)(2)(C + VC x)(\/cz_) (C+VcZ- )( \/_+Vc (1))

XHCE =)

_BC(C+VC* A 2 7 2_ 2
= B ) 2 — e+ VT )\/cj C xﬂ
_BCCc+vVer -9 .2 CF T N2 (22
= G — 0 2x° + = 2 CVC? —x“+ x°— (C*—x9

BCC+VCP - o VeI 2 - Cz)

X3(C? - x?) \ 22

_ BOCNVC — e - ¢(c? - x) — CVCE— )

2(C2 2)3/2

2 2 _ 2
= BECr VE X2 — c2 - cVET—d)

XZ(CZ _ X2)3/2
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55. continued

To find the critical points for 0 < x < C, we solve:
2% - C?=cVet-x2
ax* — ACXP% + C* = C* - CP
4x* = 3C%* =0
x(4x?> —3C% =0

corresponding triangle height is

a-mx=fx)—f'(x) - x

B > > Bx?
=B+ =VC —x"+ ———
C C\/CZ*XZ

2
o)
2
. < =
C 4 cjct-=-

3BC?

-B+ 8¢+ 4
c\2 c?
2

B, 3B
2 2

=3B

This shows that the triangle has minimum area when its height is 3B.

cV3

The minimum value of A(x) for 0 < x < C occurs at the critical point x = =—=

2

,or X2 =

m Section 4.5 Linearization and Newton’s Method (pp. 220-232)

Exploration 1 Approximating with Tangent Lines

1. f'(x) = 2%, f'(1) = 2, so an equation of the tangent lineisy —1=2(x — 1) ory = 2x — 1.

3. Since (y; — ¥,)(1) = y;(2) — y,(1) = 1 — 1 = 0, this view shifts the action from the point (1, 1) to the point (1, 0). Also
(v, = ¥)' (1) =y,'(1) =¥,/ (1) =2 - 2= 0. Thusthetangent linetoy, — y, a x = 1ishorizontal (the x-axis). The measure of
how well y, fitsy, at (1, 1) is the same as the measure of how well the x-axisfitsy, — vy, at (1, 0).

4. These tables show that the values of y, — y, near x = 1 are close to 0 so that v, is a good approximation to y; near

X = 1. Here are two tables with A Table = 0.0001.
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Exploration 2 Using Newton’s Method on the
Grapher
1-3. Here arethefirst 11 computations.
O, 35K
=i

RN
L]
[
[
Lualas]
n
=]
n
F
Ly]

253045

4. Answerswill vary. Here iswhat happens for x;, = —2.
“EEE
-

Ie
1

e

]
LA LA AL LA LA

Quick Review 4.5

dy 2 d, 2 2
Yo +1) -2+ 1) = +
1 o oS x*+1 OIX(x 1) = 2xcos (x* + 1)

dy _ (x+ 1)1 —sinx) — (x+ cosx)(1)

2.
dx (x + 1)?
_ X—xsnx+1—s8nx—X— cosx
(x + 1)?
_ 1—-cosx—(x+1)snx
(x + 1)%
3.
I ——

o]

2k
H=-EBA1NZZ ¥=0

[-2, 6] by [-3,3]
x = —0.567

1V

ﬁgtEEEiBSH V=0
[—4, 4] by [-10, 10]

x = —0.322

5/ 0=+ e M1 =e*-xe*
f'(0)=1
The lines passes through (0, 1) and has slope 1. Its equation
isy=x+ 1

6.f' ) =X(—e N+ (—e N1 =e*—xe*
f/(-1) =et— (—eh =2e
The lines passes through (—1, —e + 1) and has slope 2e.
Itsequationisy = 2e(x + 1) + (—e + 1), or
y=2ex+e+ 1L

Section4.5 169

7.(ad x+1=0
x=-1
(b) 2ex+e+1=0
2ex=—(e+ 1)
__e+t1

~ —0.684

8. f'(X)=3%—4
f'(1) =312 -4=-1
Sincef(1) = —2and f'(1) = —1, the graph of g(x) passes
through (1, —2) and has slope —1. Its equation is
gx¥) = —1x — 1) + (=2),0rg(x) = —x — 1.

X f(3) 9(x)
0.7 |—1457 |-17
08 |—-1688 |—18
09 [—-1871 |-19
10 | -2 -2
11 |—2069 |-21
12 |-2072 |-22
13 |—-2.003 |-23
9. f'(X) = cos x

f’(1.5) = cos 1.5
Sincef(1.5) = sin 1.5 and f'(1.5) = cos 1.5, the tangent
line passes through (1.5, sin 1.5) and has slope cos 1.5. Its
equation isy = (cos 1.5)(x — 1.5) + sin 1.5, or
approximately y = 0.071x + 0.891

[0, 7r] by [<0.2, 1.3
10. For x> 3,f'(x) = ;, andsof'(4) = L Since
2Vx—3 2
f(4=21landf’'(4) = % the tangent line passes through
(4, 1) and has slope%. Itsequationisy = %(x —4)+1,0r

=1
y—2x 1.

/
3

(L7 by[-272]

Section 4.5 Exercises
1 @) f'x)=3%-2
Wehavef(2) = 7and f'(2) = 10.
L) =f(2) +f'(2Q(x—2)
=7+ 10(x — 2)
=10x — 13
(b) Sincef(2.1) = 8.061 and L(2.1) = 8, the
approximation differs from the true value in absolute
value by less than 1077,
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L (2=~
2Vx2+9 Vx2+9
Wehavef(—4) =5andf'(—4) = ——

2.(a) /() =

LX) =f(=4) + ' (=4 — (-4)

4
=5-2(x+4
2x+ 4
= —ﬂx + 2
5 5

(b) Sincef(—3.9) = 4.9204 and L(—3.9) = 4.92, the
approximation differs from the true value by less than

103,
3@ f'=1-x72
We havef(1) = 2andf’(1) = 0.
L) =f(1) + f'(DH(x— 1)
=2+0x-1)
=2

(b) Sincef(1.1) = 2.009 and L(1.1) = 2, the
approximation differs from the true value by less than

1072
N
We havef(0) = 0and f'(0) = 1.
L(x) = f(0) + f'(0)(x — 0)
=0+ 1x

=X
(b) Sincef(0.1) = 0.0953 and L(0.1) = 0.1 the
approximation differs from the true value by less than

1072
5 (@) f'(x) =
We havef(7) = 0and f'(7) = 1.
L(X) = f(m) + f'(m)(x — 7)
=0+ 1x—m)
=X—-

(b) Sincef(s + 0.1) = 0.10033 and L(7 + 0.1) = 0.1, the
approximation differs from the true value in absolute
value by less than 1073.

1
V1-x?
We have f (0) :%andf’(O) = -

6. () f'(x) = —

L(x) = f(0) + f'(0)(x — 0)
= g + (—1)(x—0)
= _x+ T
2

(b) Sincef(0.1) =~ 1.47063 and L(0.1) =~ 1.47080, the
approximation differs from the true value in absolute
value by less than 1073,
7.f/(%) = k(1 + )kt
Wehavef(0) = 1and f'(0) = k.
L(x) = f(0) + f'(0)(x — 0)
=1+ k(x—0)
=1+ kx

8.

10.

11.

12.

@ F)=(1—x8=[1+(-x]®~1+6(-x) =1 6x

(b) 109 = 12 =21+ (~X] 1= 2[1 + (~1)(-X]

=2+ 2X

©fM=@1+x 2=~ 1+(_%)X: 1_2
@dfx)=V2+x2= \/§<1+%2>ﬂ2
AR

@ f() = (4+ 33 = 41’3<1+ 4)1/3

~ 4“3(1 +1 ﬁ) - 41’3<1 + 5)
34 4

o o0 = (1 1 \23 . 1 \]%3
01091515 =[1+ (%]
SEEE (A PP
3\ 2+x 6 + 3x
L) = + Cos X
2Vx+1 3
Weha\/ef(O):1andf’(0):E

L(x) = f(0) + f'(0)(x — 0)
-1+ 3
2
The linearization is the sum of the two individual

linearizations, which are x for ssn x and 1 + %x

for Vx + 1.

(@) (1.002)'% = (1 + 0.002)}® =~ 1 + (100)(0.002)

=12
\1.002lOO - 12/ =0021< 10!

(b) V1.009 = (1 + 0.009)¥3 ~ 1 + (o 009) = 1.003;
\v 1.009 — 1.003 =9 x 106 < 10°°

Center = —1

f')=4x+ 4

Wehavef(—1) = —5andf'(-1) =

L) =f(—-1) +f' (-)(x— (-1)) = -5+ 0(x + 1) = —

Center = 8

F/(x) = 2x 283

We have f(8) = 2 and f/(8) = i.

L) = f(8) + f (8)(x—8)—2+—(x—8)——+

4
12 3



13.

14.

15.

16.

Center = 1

gy = XHFH@ - @ _ 1
f (X) (X+ 1)2 (X+ 1)2
Wehavef(1) = 2 and (1) = 5

LO9 = (D) + F/(D(x — 1) = 2+ 5(x = ) = x+

N

Alternate solution:

Usingcenter=§,wehavef 3 =§andf’ 3 =i.
2 2 5 2 2

0= )+ Q-3 3B

Center =
f'(X) = —sinx

We ha\/ef(ﬂ) = Oandf’<3> = -1
2 2

L(x):f(g>+f'(g>(x—g>=o—1(x—g)= —x+ T

Letf(x) =x3+x— 1. Thenf’(x) = 3x* + 1 and
_ _f(xn):X_xn3+xnfl
ntlo Tnofrx) n o 2+l

Note that f is cubic and f ' is always positive, so thereis
exactly one solution. We choose x; = 0.

X = 0
X, = 1
=0.75
X, =~ 0.6860465

X, ~ 0.6823396
X, ~ 0.6823278
X, ~ 06823278

Solution: x = 0.682328

Letf(x) =x*+ x— 3. Thenf’(x) = 4x® + 1 and
«  —x f) _ x4 +3xn73
ntlooTh f(x) 4%+ 1

The graph of y = f(x) shows that f(x) = 0 has two

solutions.

|1
WV

[-3,3] by [-4, 4]

X = -15 X = 1.2

X, = —1.455 X, = 1.6541962
Xy = —1.4526332 Xy = 1.1640373
Xy = —1.4526269 Xy = 1.1640351
Xg = —1.4526269 Xg = 1.1640351

Solutions: x = —1.452627, 1.164035
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17. Letf(X) = x> — 2x + 1 — sinx.
Thenf’(x) = 2x — 2 — cos x and

) o x2-2x t1l-snx
f(x) h 2%, — 2= CcosX,

The graph of y = f(X) shows that f (x) = 0 has two

/

Ry

n+1 n

solutions

[-4,4 by [-33]

x, = 0.3 X, = 2

X, ~ 03825699 X, ~ 19624598
X, ~ 03862295  x, ~ 19615695
X, ~ 03862369 X, ~ 1.9615690
%, ~ 03862369 X, ~ 1.9615690

Solutions: x = 0.386237, 1.961569

18. Letf(x) = x* — 2. Then f’(x) = 4x® and
RS x4—2

fx) o ax3
Note that f (x) = O clearly has two solutions, namely

Xar1 =%,

171

X = t%. We use Newton’s method to find the decimal

equivalents.
X =15
X, =~ 1.2731481
X, =~ 1.1971498

X, ~ 1.1892858
x; ~ 1.1892071
Xg = 1.1892071
Solutions: x = +1.189207
19. (a) Since% =3x% -3, dy = (3% — 3) dx.
(b) At the given values,
dy = (3 - 22 — 3)(0.05) = 9(0.05) = 0.45.
L dy (LX) - (29(2x) _ 2-2¢
20. () Since 1+D? @+
_2-22
dy = w2 dx.

(b) At the given values,

2—2(-2)7?
[1+(-27%°
= —0.024.

2—-8
52

dy = 1) = (0.1)

21. (a) Since% - (xz)@) + (I = 2xInx + X,

dy = (2xIn x + x) dx.

(b) At the given values,

dy = [2(1) In (1) + 1](0.01) = 1(0.01) = 0.01
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22. (a) Since

\/1—x2

dy =

me(v__

1-2x2

— dx.

(b) At the given values, dy =

+V1-x2=

y2n+n/—xxn

X+ (1-x) _ 1-2°
V11— x? Vi 2

1-20° o,

Vitor 227

23. (a) Since% = e3"X cos x, dy = (cos X)e3" X dx.

(b) At the given values,

dy = (cos 7)(eS" ™)(—0.1) = (~1)(1)(—0.1) = 0.1

. dy
24, Since 2= =
(@) Since ™

~3cs0 (1 - —) cot (1

:csc(1—§>cot(1—§>,

dy = csc(l - —) cot(l - %) dx.

(b) At the given values,

dy =

csc(lf )cot(

fgmn

=0.1csc % cot % ~ 0.205525

X
3

sl

25. (@ y+xy—x=0
y(1+Xx) =x
X
)E_X)JE% (@)
x+ 1)(1 X)(1) _ 1
Since dxd x+12  xr1?
_ X
=

(b) At the given values,

dy =

0+ 1)?

001~ _ 0.

26. (a) Since% = sec (0@ — 1) tan (2 — 1) - (2X),

dy =

2x sec (X2

(b) At the given values,

dy =

2(1.5) sec (L5% —

— 1) tan (x? —1) dx.

1) tan (L5% —

= 0.15sec 1.25 tan 1.25 =~ 1.431663.

27. () Af=f(0.1) — f(0) =

(b) Sincef’(x) =2x+ 2,1'(0) = 2.
Therefore, df = 2dx = 2(0.1) =

() |af -

df| =021 - 0.2 =
28. (@) Af=1f(11) —f(1) =

0.01

(b) Sincef'(x) =3x%>—1,f'(1) = 2.
Therefore, df = 2dx = 2(0.1) =

(©) |Af -

df| = |0.231 - 0.2 =

0.031

021-0=021

1) - (0.05)

0231 -0=0231

29.

30.

31.

32.

33.

35.

36.

37.

- _ ~0_5,__2
(8) Af=1(055) ~ (05) = 7 — 2=~

(b) Sincef’(x) = —x 2, f'(0.5) = —4.

Therefore, df = —4 dx = —4(0.05) = —0.2 = —%
© |Af—df|=|-2 + =1
11 5 55

(@) Af=f(1.01) — f(1) = 1.04060401 — 1 = 0.04060401
(b) Sincef’(x) = 4x5,f'(1) = 4

Therefore, df = 4 dx = 4(0.01) = 0.04.
(c) |Af — df| = |0.04060401 — 0.04) = 0.00060401

Note that % = 472, dV = 4ar2 dr. When r changes from
atoa + dr, the change in volume is approximately

4maldr.

Note that 3—? = 871, s0 dS = 8xr dr. When r changes from
atoa + dr, the change in surface area is approximately

8madr.

Note that (;—\; = 3x%, s0 dV = 3x? dx. When x changes from

atoa + dx, the change in volume is approximately 3a2 dx.

. Note that 3—f = 12x, so dS = 12x dx. When x changes from

ato a + dx, the change in surface area is approximately

12a dx.

Note that 3—:/ = 27rh, so dV = 2zrh dr. When r changes
from ato a + dr, the change in volume is approximately

2mrah dr.

Note that 3—: = 271, 50 dS = 27t dh. When h changes from
atoa + dh, the changein lateral surface areais
approximately 27rr dh.
(@) Notethat f'(0) = cos0 = 1.

LX) =fO)+f'O)(x—0 =1+Ix=x+1
(b) £(0.1) =~ L(0.1) = 1.1

(c) Theactual valueislessthan 1.1. Thisis because the
derivative is decreasing over the interval [0, 0.1], which
means that the graph of f(x) is concave down and lies
below its linearization in this interval.



38.

39.

40.

41.

42.

(a) Notethat A = 7r? and g—‘/: = 27, so dA = 27 dr.
When r changes from ato a + dr, the changein areais
approximately 27ra dr. Substituting 2 for a and 0.02 for

dr, the change in area is approximately

27(2)(0.02) = 0.087 ~ 0.2513
() ——%:ooz 2%
A

Let A = cross section area, C = circumference, and

D = diameter. Then D = <, sod—D—fanddD -Lldac
dC T
2 [
2 2w dC 2w

dA = dC When C increases from 107 in. to
107 + 2 in. the diameter increases by

D= l(2) = g =~ 0.6366 in. and the area increases by
107

approximately dA = —(2) =10in%

Let x = edge length and V = volume. Then V = x5, and so
dV = 3x? dx. With x = 10 cm and dx = 0.01x = 0.1 cm, we
have V = 10° = 1000 cm?® and dV = 3(10)%(0.1) = 30 cm?®,
so the percentage error in the volume measurement is

30

= = = 0,
approxmately = 1000 = 0.03 = 3%.

Let x = side length and A = area. Then A = x? and
" 2%, 0 dA = 2x dx. We want |[dA| = 0.02A, which
gives [2x dx = 0.02x?, or |dx| = 0.01x. The side length

should be measured with an error of no more than 1%.

The volume of acylinder isV = #r2h. When h is held
fixed, we ha\/e%\r/ = 27rh,and sodV = 2#rh dr.
Forh=30in.,r =6in.,, and dr = 0.5 in., the thickness of
the shell is approximately

dV = 2zrh dr = 27(6)(30)(0.5) = 1807 ~ 565.5 in°.

. Note that
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43. Let 6 = angle of elevation and h = height of building. Then

h=30tan 6, so% = 30 sec? 9 and dh = 30 sec? 6 dd. We
want |dh| < 0.04h, which gives:

30 sec? 6 d6| < 0.04 (30 tan 6)
1 | 0.04sin 6
cos 6’ cos 6
|do| < 0.04 sin 6 cos 6

For 6 = 75° = 5—77 radians, we have

do| < 0.04 sin —2 cosE = 0.01 radian. The angle should
be measured with an error of less than 0.01 radian (or
approximately 0.57 degrees), which is a percentage error of

approximately 0.76%.

= 3mh2, so dV = 37h? dh. We want

dv| = 0.01V, WhICh gives [37h? dh| = 0.01(7h3), or

0.01h Olh

ldh| = . The height should be measured with an error

of no more than 5%.

45. (a) Notethat V = 7rr?h = 10712 = 2.57D? where D is the

interior diameter of the tank. Then % = 57D, s0

dV = 57D dD. We want |dV| = 0.01V, which gives
|57D dD| = 0.01(2.57D?), or |dD| = 0.005D. The
interior diameter should be measured with an error of

no more than 0.5%.

(b) Now we let D represent the exterior diameter of the
tank, and we assume that the paint coverage rate
(number of square feet covered per gallon of paint) is
known precisely. Then, to determine the amount of
paint within 5%, we need to calculate the lateral
surface area Swith an error of no more than 5%. Note
thet S = 27rh = 107D, s0 ;’—S‘ — 107 and
dS = 107 dD. We want |[dY = 0.05S, which gives
|10 dD| = 0.05(1077D), or dD = 0.05D. The exterior
diameter should be measured with an error of no more

than 5%.
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46.

47.

48.

49.

50.

51.

SinceV = 7r?h, we haveij—‘\r/ = 27rh, and dV = 2arh dr.
We want [dV| = 0.001V, which gives

|27rrh dr| =< 0.001 #rr2h, or |dr| = 0.0005r. The variation of
the radius should not exceed Tloo of the ideal radius, that

is, 0.05% of the idedl radius.

We have((jjlgv = —bg~2 sodW = —bg~?dg.
daw — -2 2

Then o = b(5'2),2 dg _ % ~ 37.87. Theratio is
aw_,  -b@E2) Zdg 52

about 37.87 to 1.

(@) Notethat T = 27LY%g"Y2, s 3—;

= —7LY2g7%2 and
dT = —7LY2g732 dg.

(b) Notethat dT and dg have opposite signs. Thus, if g
increases, T decreases and the clock speeds up.

(© —7lY2g=32dg = dT
—7(100)Y2(980) 32 dg = 0.001
dg ~ —0.9765

Since dg = —0.9765, g = 980 — 0.9765 = 979.0235.

f) 0 _
Py 1 Ty v
Therefore x, = x;, and all later approximations are also

Iff(x) # 0, we have x, = X, —

equal to X;.
3 , 1 _ h1/2
If x, = h, then f'(x,) _Wandxz_ h_T
2n??
=h—2h=—h.Ifx, = —h, then
X)=-——=adx,=—-h—-——=- -
VT TR S
2h1!2
/CH I:l
[-3,3] by [-05, 2]
o — L1213 _y 10
Note that f '(x) 3x andsox =X, Fx)

N N - _ _
=X, =X 3xn— 2xn.Forxl—1,wehave

X, = —2,%=4,x,= =8 and x; = 16; |x | = 2" 1.
///F

[—10, 10] by [-3, 3]

52. (@) i. Q(a) = f(a) impliesthat b, = f(a).
ii. SinceQ’(x) = b, + 2b(x — &), Q'(a) =f'(a)
impliesthat b, = f'(a).

iii. Since Q"(x) = 2b,, Q"(a) = f"(a) implies that
_f"@
b ==~

In summary, b = f(a), b, = f'(a), and b, = f”;a)_

() f)=(1-x""
f'0)=—-11-%"%(-1)=Q1-x"?
f/(x) = 21— )" 3(-1) =21 —x) 2

Sincef(0) = 1, f'(0) = 1, and f”(0) = 2, the

coefficientsareby = 1,b; = 1, and b, = 2 -1 The
2

quadratic approximation isQ(x) = 1 + x + X2,

© L//

[—2.35, 2.35] by [—1.25, 3.25]

As one zooms in, the two graphs quickly become
indistinguishable. They appear to be identical.

(@ g9 = x?
9’09 = —x 2
9"09 = 22

Sinceg(l) =1,9'(1) = —1,andg”"(1) = 2, the

coefficients are bO =1, bl = —1, and b2 =2_ 1. The
2

quadratic approximation is

QX =1-(x—1) + (x— 1>~

""-\\
[—1.35, 3.35] by [~ 1.25, 3.25]

As one zooms in, the two graphs quickly become
indistinguishable. They appear to be identical.
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(® hX) =1+ xY2 55. g(a) = ¢, soif E(a) = 0, then g(a) = f(a) and c = f(a).
h'(x) = %(1 +x)"12 Then E(X) = f(X) — g(x) = f(X) — f(@) — m(x — a).
h'(x) = —%(1 +x) 732 Thus, E® —f®-f@ _

] ) 1 , 1 X—a X—a
Sinceh(0) = 1, h'(1) = > and h"(1) = 7 the lim f(x) —f(@ _ f'(a), o lim ExX) _ f'(a) — m.
x-a X—a x-aX—a

1 —% 1 Therefore, if the limit of Ex is zero, thenm = f'(a) and
coefficientsareb, = 1,b, = =, andb, = — = —=. X—a

2 2 8

, 909 = L()-

The quadratic approximation isQ(x) = 1 + % - %

m Section 4.6 Related Rates (pp. 232-241)

=" Exploration 1 Sliding Ladder

1. Here the x-axis represents the ground and the y-axis

____f.--"’

represents the wall. The curve (X, , ives the position of
[~1.35, 3.35] by [ 1.25, 3.25] ep (xpy) 9 p

As one zooms in, the two graphs quickly become the bottom of the ladder (distance from the wall) at any

indistinguishable. Th ear to be identical.
g &P timetin0=t=< %3 The curve (X,, Y,) gives the position
(f) The linearization of any differentiable function u(x) at of the top of the ladder at any timein0 =<t = 1_33
x=aisL(x) = u@ + u'(@(x — a) = by + b,(x — &), 2 ostSE
where by, and b, are the coefficients of the constant and 3. Thisisasnapshot at t = 3.1. The top of the ladder is
) ) o moving down the y-axis and the bottom of the ladder is
linear terms of the quadratic approximation. Thus, the moving to the right on the x-axis. Both axes are hidden
from view.

linearization for f(x) at x = 0is 1 + x; the linearization

forg(x)atx=1isl1— (x— 1) or 2 — x; and the

linearization for h(x) at x = 0is1 + %

53. Just multiply the corresponding derivative formulas by dx. [—1, 15] by [~ 1, 15]

: d
(@) Since—(c) = 0, d(c) = 0. dy ) ot
dx 4._:y(t):7_
dt V132 — o2
(b) Sincedi(cu) = C%‘ d(cu) = cdu. y'(05) =~ —~0.348 fi/sec?, y'(1) = ~0.712 ft/sec?,
X X

. W y'(1.5) = —1.107 ft/sec?, y'(2) ~ —1.561 ft/sec?.
q —au, v =
(c) Smce&(u +V) = o + v d(u +v) = du + dv
Since lim y’'(t) = —o, the speed of the top of the ladder

. d _dv, . du _ t-(13/3)
d) Since—(u - Vv) =u—+v—,d(u-v)=udv+vdu. . .
@ dx( ) dx dx ( ) isinfinite as it hits the ground.
© Smcei(g) - & & d(E) —vdu—udv Quick Review 4.6
v v v v 1.D=V(7-02+(0-52=\49 + 25=\/74
(f) Sincediu“ — nunfl%' d(Un) = nu™1du 2.D= \/(b - 0)2 +(0— a)2 =Va? + b?
X X
inx/ 3. Useimplicit differentiation.
54, lim 120X = Jim STXESX d 5 _ d
x-0 x-0 ) &(ZXY"'Y) _&(X"'Y)
=lim (—1 y) dy d d
X-0 \COSX X ZX& +2y(1) + 2yd—Z = + d—i
. 1 . sinx
= = =2 d
(LII?JCOSX)(LIE X ) (xt2y -1 =1-2
=) = 1. (I

dx 22x+2y—1
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4. Useimplicit differentiation.

9 xsiny) = 91—
Sxsiny) = £(1-x)

Y i (s =Y
(9(cosy)F + (siny)(D) = —xL = y(1)
(x+xcosy)% =-y—siny
dy _ —y—sny

dx X + X cosy
dy _ _ y+siny
dx X + X cosy

5. Useimplicit differentiation.

d_ o d
—X“ = —1tan
dx dx y
dy
2x = sec? y=X
ydx
dy _ 2
dx  sec?y

dy
@&y _s
™ X Cos y

6. Useimplicit differentiation.
d d
— + = _—
v In(x+y) OIX(Zx)

L <1+Q>:2
X+y dx

dy
+ L =2(x+
1 v 2(x+y)

dy
A
i 2X+2y—1

7. Using A(—2, 1) we create the parametric equations
x= —2+atandy = 1+ bt, which determine aline
passing through A at t = 0. We determine a and b so that

the line passes through B(4, —3) at t = 1. Since

4=-2+a wehavea= 6,andsince -3 =1+ b, we
have b = —4. Thus, one parametrization for the line
segmentisx = —2+ 6t,y=1—4t, 0=t = 1. (Other

answers are possible.)

8. Using A(0, —4), we create the parametric equations
x=0+ atandy = —4 + bt, which determine aline
passing through A at t = 0. We now determine a and b so
that the line passes through B(5, 0) at t = 1. Since
5=0+ a wehavea=5,andsince0 = —4 + b, we have
b = 4. Thus, one parametrization for the line segment is
Xx=5t,y=—4+ 4,0 =<t = 1. (Other answers are

possible.)

37
2

9. Onepossible answer: — =t =

ﬂ
2

10. One possible answer: 3?” =t=2nw

Section 4.6 Exercises

ince JA _ dA dr dA_, dr
1. Smc:ea e dt,We have ot 277rdt.
2. Sinced—s= dsdr wehaved—s= 87-rrg

dt dr dt’ dt dt’

3. (a) Since

(b) Since

dv
C _— =
© &
v _
dt
av_
dt
P _
dt
P _
dt
P _
dt
dP

dt

o _avan av_ o
& dh o WenVe G = T
dv _ dVv dr dv dr
N _dVa e have Y = 27rhd
a dr e Ve T My

d_2,_ _d. 2
dtﬂ'l’ h Wdt(l’ h)
2dh dr
— 4+ —
w(r o h(2r)dt)
dr
r“— + 2mrh—
g T
d.o 2
G

dj2 4 j2dR
at ot

R(zlﬂ) + |20R

a) ot
dl 20R

2R 4 20R
o

dP

(b) If Pisconstant, we ha\/ea = 0, which means

orid
it

drR drR 2R di 2P di
+|2_: f— = = = —
dt 0,0 dt I dt 13 dt

ds _ d > > >
5, ===Vx“+y +z
dt y

ds _

a2V +y2+ 2 dt

1 g(x2 +vy?+ 29

ds 1 dx dy dz
== 2%—+ 2yL + 22—
dt 2\/)(2 + y2 + 22< dt Zydt dt)
d, by
s o VT ra
Vet y2+ 22
dA _ d(1 .
6. — =—{=absn6
& = alz0sn)
dA _ 1/da . do . d .
—=Z—-+b-snfé+a-—-sinf+ab-—sn
dt 2(dt 0 dt 0 dt 6)
dA _ 1 . da . ,db do
— == — + — + —
& 2(bsmedt asun(?dt abcosedt)

7. (8) SinceVisincreasing at the rate of 1 volt/sec,

dv

1 volt/sec.

(b) Sincel isdecreasing at the rate of % amp/sec,

o _

dt

—% amp/sec.

(c) Differentiating both sides of V = IR, we have

av

drR 4 Rdl

dt

dt dt’



(d) Notethat V = IR gives 12 = 2R, so R = 6 ohms. Now
substitute the known values into the equation in (c).

1=29R 4 6(—1>
o 3

dR
3=2—
dt
aR_3 ohmg/sec
dt 2

R is changing at the rate of % ohmg/sec. Since this

value is positive, R is increasing.

8. Step 1

r = radius of plate
A = areaof plate

Step 2:

At the instant in question, % = 0.01 cm/sec, r = 50 cm.
Step 3:

We want to find %A.

Step 4:

A= 712

Step 5:

dA _ , dr

Step 6:

dA _ _ 2

e 27(50)(0.01) = 7 cm“/sec

At the instant in question, the areaisincreasing at the rate

of 7 cm?/sec.

9. Step 1:

| = length of rectangle

w = width of rectangle

A = area of rectangle

P = perimeter of rectangle

D = length of adiagonal of the rectangle

Step 2:

At the instant in question,

da_ —2 cm/sec, aw _ 2 cm/sec, | = 12 cm,
dt dt

andw = 5cm.

Step 3:
. dA dP dD
We want to find ey and T
Steps 4, 5, and 6:
(@ A=Ilw
A _jdw y yd

dt  dt | dt
% = (12)(2) + (5)(—2) = 14 cm%sec

The rate of change of the areais 14 cm?/sec.
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(b) P=2 + 2w
P _dl, dw
dt dt dt
dp

e 2(—2) + 2(2) = 0 cm/sec

The rate of change of the perimeter is 0 cm/sec.

(© D=VIZ+w?
L
d_ 1 (g+ dw):dt dt
d o 2ViZ+w?\ d ) ViZew
D _ (19(-2 +B) _ _14 e

dt A/ 122 4 52 13
The rate of change of the length of the diameter is

_1a cm/sec.
13

(d) The areaisincreasing, because its derivative is positive.
The perimeter is not changing, because its derivative is
zero. The diagonal length is decreasing, because its
derivative is negative.

10. Step 1:

X, Y, Z = edge lengths of the box
V = volume of the box

S = surface area of the box

s = diagonal length of the box

Step 2:

At the instant in question,
X _ 1m/sec,ﬂ= 72m/sec,%= 1mi/sec, X =4m,
dt dt dt

y=3m,andz=2m.

Step 3:
. ,dv ds ds
We want to find gy and T
Steps 4, 5, and 6:
(@ V=xyz
av dz dy dx
= =xy— + xz2% + yz—
dt Xydt det yzdt

L= @EO + @R(-2 + @ = 2msc

The rate of change of the volume is 2 m®/sec.

(b) S=20xy + xz+ y2)
_of Oy dx odz o _dx  dz _dy
ET4W+W+%+%+W+%)

& - 2142 + @AW + @ +
@D + B)1) + (A(—2)] = 0m?sec

The rate of change of the surface areais 0 m?/sec.
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10.

11.

12.

continued

(© s=Vx2+y?>+7°

s 1
2V +y? + 72
dx | dy 0z

a Y T fa

T VE+ 2+ A

dx dy dz
2%— + 2y—= + 22—
a - Ve dy)

s @OFEE+RQM |
@ VE R 2 v

The rate of change of the diagonal length is 0 m/sec.

= 0 m/sec

Step 1:
s = (diagonal) distance from antenna to airplane
x = horizontal distance from antennato airplane

Step 2:

At the instant in question,

s= 10 mi and % = 300 mph.
Step 3:

We want to find %.
Step 4:

X2+ 49 =s%0rx = Vs> — 49

Step 5:

&x__ 1 (25§> -_ s G

dt 2V — 49\ dt) /249 ot

Step 6:

&X_ 10 (300) = 399 yph ~ 420.08 mph

d 12— 49 V51
The speed of the airplane is about 420.08 mph.

Step 1:
h = height (or depth) of the water in the trough
V = volume of water in the trough
Step 2:
At the instant in question, % = 25ft3minand h = 2 ft.
Step 3:
We want to find @.
dt
Step 4:
The width of the top surface of the water is %h' so we have

V= %(h)(%h)(lS), or V = 10h?

Step 5:
av _ dh
o Oy
Step 6:

_oph

25 =202

a _ 0.0625 = L tmin
dt 16

The water level isincreasing at the rate of % ft/min.

13. Step 1:

x = distance from wall to base of ladder

y = height of top of ladder

A = area of triangle formed by the ladder, wall, and ground
0 = angle between the ladder and the ground

Step 2:
At the instant in question, x = 12 ft and % = 5 ft/sec.

Step 3:

dy dA b
dt’ dt,and dt’
Step 4, 5, and 6:

We want to find —

(@) x®+ y?=169
dx dy
x4 W g
dt 2ydt

To evaluate, note that, at the instant in question,

y=V169 — x2= V169 — 122 = 5.

Then 2(12)(5) + 2(5)% =0

dy_ _ _y_

Y —12fUsec (or Y12 ft/sec)

The top of the ladder is sliding down the wall at the
rate of 12 ft/sec. (Note that the downward rate of

motion is positive.)

1
(b) A=2xy
dA _ 1/, dy  dx
ot 2(th * ydt)
Using the results from step 2 and from part (a), we
ha\/e% - %[(12)(—12) + (5)(5)] = —1—;9 ft/sec.

The area of the triangle is changing at the rate of

—59.5 ft?/sec.
(o) tano = y
X Xﬂ_y%
2,00 _ Tdt “dt
Sec Gdt 2

Sincetan 6 = % wehave(foro =§< %)

=169
G

13
Combining this result with the results from step 2 and

cosé)=%andsose(:29=

169 do _ (12)(~12) - (5)(5)

from part (a), we have & 2 S0
%0 = —1radian/sec. The angle is changing at the rate
of —1 radian/sec.



14.

15.

Step 1:

Inge

s = length of kite string
x = horizontal distance from Inge to kite

Step 2:
Attheinstant in questlon = 25 ft/sec and s = 500 ft
Step 3:
We want to find %
Step 4:
X2 + 300% = &2
Step 5:

dx

- o
ZXE_ZS_md sd—

Step 6:

10

At the instant in question, since x> + 3002 = s2, we have
x = Vs — 3002 = V5002 —
Thus (400)(25) =

3002 = 400.

the string out at the rate of 20 ft/sec.

Step 1:

-

6in.

F—r—
The cylinder shown represents the shape of the hole.
r = radius of cylinder
V = volume of cylinder
Step 2:
At the instant in question, ar_000Lin _ 1 i /min

dt 3 min 3000
and (since the diameter is3.800in.), r = 1.900 in.
Step 3:
We want to find 9.
dt

Step 4:

V = 7r3(6) = 6mr2

(500)%, 0 % — 20 ft/sec. Inge must let

16.

Section 4.6
Step 5:
& _ o dr
Step 6:
= 127(L. 900)( ) = 197 _ 000767
3000 2500

~ o.0239 in¥min
The volume isincreasing at the rate of approximately

0.0239 in¥/min.

Step 1:

—=—

—r—

r = base radius of cone
h = height of cone
V = volume of cone

Step 2:
At theinstant in question, h = 4 m and ‘3—\( = 10 m¥min.
Step 3:
. dh dr
We want to find Y and o
Step 4:

Since the height isg of the base diameter, we have

h= §(2r) orr= gh.

1671-h

We also have V = wrzh—% (% ) . We will
use the equations V = 16mh° i r = 5
Steps 5 and 6:
dv _ 167h? dh
@ &%= "9
_ 16m(4)? dh
10 = 2omE°
9 dt
dh_ 45 n = 22 crvmin
dt 1287 327

The height is changing at the rate of

1125
327

~ 11.19 cm/min.

(b) Using the results from Step 4 and part (a), we have

g = ﬂ@ = ﬂ 1125 = @Cm/m”]
dt 3 dt 3\ 327 8w

The radius is changing at the rate of
375

== = 14.92 cm/min.
us
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17. Step 1:

\’\

6m\r
\l\T\

r = radius of top surface of water
h = depth of water in reservoir
V = volume of water in reservoir

45 m-|

Step 2:

At the instant in question, (:T\t/ = —50m¥minandh =5m.

Step 3:
. dh dr
W find —— —.
‘e want to find o and X
Step 4:
Note that? = % by similar cones, sor = 7.5h.
ThenV = %mZh = %77(7.5h)2h = 18.757h°

Step 5 and 6:

3 dv

(8) SinceV = 18.757h% < = 56.257h2d0

dt’
Thus —50 = 56.2577(52)%, and so
d___8 m/min = 3 cm/min.

dt 2257 O

The water level is falling by ;”—2 ~ 1.13 c/min.
T
(S nce% < 0, the rate at which the water level is

falling is positive.)

(b) Sincer = 7.5h, 759 — 80 ymin. The rate
dt dt 37

of change of the radius of the water’s surface is

- —8.49 cm/min.

37
18. (a) Step 1:
y = depth of water in bowl
V = volume of water in bowl

Step 2:

At the instant in question, ?j_\t/ = —6 m%min and
y=8m.

Step 3:

We want to find the value of %

Step 4:

V= %y2(39 —y)orV=13my? - 7y°
Step 5:

av _ N
™ 267y — my°) &

Step 6:

—6 = [26m(8) — 77(82)]%

-6 = 144’7Tﬂ
dt

y_ 1 001326 m/min
dt 247
r—2 ~ —1.326 c/min

6

o

(b) Sincer? + (13 — y)2 = 13

r=V169 — (13 — y)2 = V26y — y2

(c) Step 1:
y = depth of water
r = radius of water surface
V = volume of water in bowl

Step 2:
At the instant in question, %\t/ = —6m3min, y=8m,
and therefore (from part (a)) dy__ 1 m/min.

dt 2477

Step 3:

We want to find the value of %

Step 4:

From part (b), r = V 26y — y2.

Step 5:

ﬂ:;(zg_ zyﬂzﬁﬂ
dt /26y — y2 dt V26y — y2 dt
Step 6:

@__wzs (1) s 1)
dt \/26(8) — g2\ —24m 12\ 247

= ——2 ~ 000553 m/min
288

or —12 ~ _0,553 cm/min
T2

19. Step 1:

r = radius of spherical droplet
S = surface area of spherical droplet
V = volume of spherical droplet

Step 2:
No numerical information is given.

Step 3:

We want to show that % is constant.

Step 4:
S=4mr2 V= %wr3, %V = kSfor some constant k
Steps 5 and 6:
Differentiating V = 413 we have &Y = 47200
3 dt dt
Substituting kSfor % and Sfor 4mr2, we have kS = ST,
dr
or= =k
dt



20. Step 1:

21.

r = radius of spherical balloon
S = surface area of spherical balloon
V = volume of spherical balloon

Step 2:
At the instant in question, Z—\t/
Step 3:
We want to find the values of — and d—s.
Steps 4, 5, and 6:
(@ V= %’n’l’3

at dt )

iomr = 477(5)2d—;

Er = 1 ft/min

The radiusisincreasing at the rate of 1 ft/min.

(b) S= 477r2
ds
i dt

% - er(©))
= 40m ft¥min
The surface areais increasing at the rate of
407 ft3min.
Step 1:
| = length of rope

x = horizontal distance from boat to dock
0 = angle between the rope and a vertical line

Step 2:
At the instant in question, % = —2ft/secand | = 10 ft.
Step 3:
We want to find the values of — E X and %.
Step 4, 5, and 6:
(@ x=VI°-36
d__ I d
dt \/—6dt
%— \/_( 2) = —2.5ft/sec

The boat is approaching the dock at the rate of

2.5 ft/sec.

= 1007 ft¥minand r = 5 ft.

22.

dc_ d
23. (a) EC = a(x3
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(b) 6 =cos 18

|
$___i_( o
dt e\ 12)dt

-(%)
o_ 1 (6 ,
&= 0.62( 2 2)( 2) = radlan/sec

The rate of change of angle 6 is —2% radian/sec.

Step 1:

x = distance from origin to bicycle

y = height of balloon (distance from origin to balloon)
s = distance from balloon to bicycle

Step 2:

We know that % isaconstant 1 ft/sec and % is a constant

17 ft/sec. Three seconds before the instant in question, the
values of x andy arex = 0 ft and y = 65 ft. Therefore, at
the instant in question x = 51 ft and y = 68 ft.

Step 3:

We want to find the value of % at the instant in question.

Step 4:
s=Vx?+y?
Step 5: de+yﬂ
ds_ 1 [(yd, _dt Tdt
Y G R
Step 6:

51)(17) + (68)(1
ds (DA +( )()zllft/sec

d V512 + 682
The distance between the balloon and the bicycleis
increasing at the rate of 11 ft/sec.

— 6x2 + 15%)
- _ dx
= (3x% — 12x + 15) m
= [3(2)% — 12(2) + 15](0.1)

-03
ad _ d
&~ (9x) = 9(0.1) =
dp _ i _ 4 _yg9_0g3=
h_d dt 09-03=06
dc _d/. 3 2, 45
_ = ] p— + =
(b) & dt(x 6 + & )
— (3x2 — 19y — 45\
(3X 12x x2> &
- {3(1.5)2 12(15) — }(0 05)
— —15625
% = —(70x) = 70— 70(0.05) =
dp _ dr

~&_35-

.062
d dtdt 50625

(—1.5625) =
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24. (a)

(b)

Section 4.6

Note that the level of the coffee in the coneis not
needed until part (b).

Step 1:

V, = volume of coffeein pot

y = depth of coffeein pot

Step 2:
av.
21— 10in3mi
5 10 in°/min
Step 3:
We want to find the value of %
Step 4:

V, = 9ny

& _ 10 _ o354in/min
dt 9

The level in the pot is increasing at the rate of
approximately 0.354 in./min.

Step 1:
v, = volume of coffee in filter
r = radius of surface of coffeein filter

h = depth of coffeein filter
Step 2:

. . . dv. . .
At the instant in question, e —10in%min and

h=5in.

Step 3:

We want to find —%.

Step 4:

Note that © = §, Or = E.
h 6 32

ThenV, = Loy =00

3 1

Step 5:

aV, _ ah? dh

dt 4 dt

Step 6:

10 - 7 th

4 dt

% _— in./min

Note that % < 0, so the rate at which the level is
falling is positive. The level in the coneisfalling at the

rate of 8~ 0.509 in./min.
5w

25.

26.

Step 1:
Q = rate of CO, exhalation (mL/min)
D = difference between Co, concentration in blood

pumped to the lungs and CO,, concentration in blood

returning from the lungs (mL/L)
y = cardiac output

Step 2:

At theinstant in question, Q = 233 mL/min, D = 41 mLI/L,
9 _ 5 (mL/Lymin, and 92 = 0 mL/min2

dt dt

Step 3:

We want to find the value of %

Step 4
-2
Step 5:
dQ dD
ay_ Do a
dt D?
Step 6:
dy _ w = 46 _ 5977 Limin?
dt (41) 1681

The cardiac output is increasing at the rate of
approximately 0.277 L/min?.

Step 1:

X = x-coordinate of particle’s location
y = y-coordinate of particle’s location

0 = angle of inclination of line joining the particle to the

origin.
Step 2:
At the instant in question,
%= 10 m/secand x = 3 m.
Step 3:
We want to find %.
dt
Step 4:
_y_xX_

Sincey = X2, we havetan 6 = Ml x and so, for

X>0,60 =tan 1x.



27.

Step 5:

do_ 1 o

dt 1+ x%dt

Step 6:

% o +132(10) = 1 radian/sec

The angle of inclination isincreasing at the rate of

1 radian/sec.

Step 1:

xY)
RS N 0
\\

x = x-coordinate of particle’s location

y = y-coordinate of particle’s location

0 = angle of inclination of line joining the particle to the
origin

Step 2:

At the instant in question, % =—-8m/secand x = —4 m.
Step 3:

We want to find %.

Step 4:

and so, for x < 0,

0=m+tan - (X)) =7 —tan"t (—x) V2

Step 5:
d _ _ 1 _L 32—y |
a1+ [(—x)—1’212< (79 1)>dt
-1 1 &
_ (1) 2(=x)%2 ot
SFEE
-1 &
2V —x(x— 1) dt
Step 6:
do 1 2 .
—=——=—(—8) = =radian/sec
dt 2Va-4- 1)( ) =5

The angle of inclination is increasing at the rate of

% radian/sec.

Section 4.6

28. Step 1:
X = x-coordinate of particle
y = y-coordinate of particle
D = distance from origin to particle

Step 2:

At theinstant in question, x =5m,y = 12m,

ax _ —1 m/sec, andg = —5 m/sec.
dt dt

Step 3:

We want to find Z—?.

Step 4:

D=Vx®+y?

Step 5: x% . yﬂ
99=—J;{a%+m%=4£4$
dt VK2 g2\ dt dt) VX2 +y?
Step 6:

d O+ A=Y 5 msec

a V2 +12

The particle's distance from the origin is changing at the

rate of —5 m/sec.

29. Step 1:

Street ..
light

16 ft

6 ft

Shadow

F—x———s—|

x = distance from streetlight base to man
s = length of shadow

Step 2:

At the instant in question, % = —5ft/sec and x = 10 ft.
Step 3:

We want to find &

Step 4:
S

By similar triangles, g = +6X. Thisis equivalent to

1
16s = 6s + 6X, or s = %x.

Step 5:

ds _ 3.

dt 5 dt

Step 6:

ds_ 3

B _2_5 = —3f
o 5( 5) 3ft/sec

The shadow length is changing at the rate of —3 ft/sec.

183
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30.

31

32.

Section 4.6

Step 1:
s = distance ball has fallen
x = distance from bottom of pole to shadow

Step 2:
2
At the instant in question, s = 16(%) = 4 ftand
gs _ 32( ) = 16 ft/sec.
dt
Step 3:

We want to find %.

Step 4:
-30 _

50x — 1500 = 50x — sx, or sx = 1500. We will use
x = 15005~ L.

Step 5:
ax _
ot
Step 6:
dx _

2ds

—1500s™

—1500(4)~%(16) = —1500 ft/sec

The shadow is moving at a velocity of —1500 ft/sec.

Step 1:

X = position of car (x = 0 when car isright in front of
you)

0 = cameraangle. (We assume 0 is negative until the car
passes in front of you, and then positive.)

Step 2:

At the first instant in question, x = 0 ft and % = 264 ft/sec.

A half second later, x = %(264) = 132 ft and
X = 264 ft/sec.
dt

Step 3:

We want to find % at each of the two instants.

Step 4:
6 = tan 1(i)
132
Step 5:
do _ ;2 1 dx
dt X 132 dt
1+ ()
Step 6:
_ A do 1
Whenx =0: — = (264) = 2 radiang/sec
dt 132
1+ ( )
132
When x = 132: 9 — #( J(264 = 1 recianvsec
d (g) 132
132
Step 1:

r = radius of balls plusice
S = surface area of ball plusice
V = volume of ball plusice

33.

Step 2:

At the instant in question,

%\t/ = —8mL/min = —8 cm¥minandr =

Step 3:

We want to find —d—s.
dt

Step 4:

We have V = gwr3 and S = 4ar2

combined by noting that r = (4—) ,S0S =47
T

Step 5:

ds Wgy

Rt e I P

Step 6:

Note that V = %w(10)3 _ 402077.
-1/3 _
%ts= 2(41 . 402%) (-8) = =16 _
i V/1000

ds

%(20) =

. These equations can be

(o)

—1.6 cm¥min

Since ™y < 0, therate of decrease is positive. The surface

areais decreasing at the rate of 1.6 cm?min.
Step 1:

p = x-coordinate of plane's position

X = x-coordinate of car’s position

s = distance from plane to car (line-of-sight)
Step 2:

At the instant in question,

p=0, dp - 120mph,s=5mi,and$: -
Step 3:

We want to find —%.

Step 4:

x—-pl+F=5

Step 5:

_yfdx _dp ds
2= PG~ )= 2
Step 6:

Note that, at the instant in question,
= V52— 32=4mi.
24 — 0)<% - 120) = 2(5)(—160)
8( d 120) — 1600
dt

X _ 120 = —200
dt
dx _
i 80 mph

The car’s speed is 80 mph.

160 mph.

10 cm.
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34. Step 1: Step 6:
s = shadow length d0 _ (20)(—2) — (10)(L .
6 = sun’s angle of elevation e % = —0.1 radian/sec
Step 2: ~ —b5.73 degrees/sec
At the instant in question, To the nearest degree, the angle is changing at the rate
s= 60 ft and % — 0.27°/min = 0.0015 radian/min. of —6 degrees per second.
Step 3: 36. Step 1:

We want to find f%
Step 4:
tan9=8—SOors= 80 cot 6

Step 5:

ds do

& _80‘33020& a = distance from O to A

Sten 6: b = distance from Oto B
e o ¢ = distancefrom Ato B

Note that, at the moment in question, sincetan 6 = % and

0<0<%,wehavesin0=%andsocsc@=%

Step 2:

) At theinstant in question, a = 5 nautical miles,
g _ —80(%) (0.0015m)

dt b = 3 nautical miles, da _ 14 knots, and db _ 21 knots.
— —0.18757 - . 12in « «
' min  1ft Step 3:
= —2.25m in/min We want to find %
~ —7.1in/min Step 4:
since % < 0, the rate at which the shadow length is Law of Cosines: c? = a’ + b® — 2ab cos 120°
ot c=a?+b%+ab
decreasing is positive. The shadow length is decreasing at
. . . Step 5:
the rate of approximately 7.1 in./min.
209 — 288 4 opdd  qdb , pda
35. Step 1: dt dt dt dt dt
a = distance from origin to A Step 6:
b = distance from origin to B ) ) )
9 = angle shown in problem statement Note that, at the instant in question,
Step 2: c=VaZ+bZ+ab=VE2+ B2+ ()3 =V4a=7
d
At the instant in question, % = —2 m/sex, % = 1 m/sec, 2(7)F(t; = 2(5)(14) + 2(3)(21) + (9)(21) + (3)(14)
dc
a=10m,andb =20m. 14a:413
Step 3: % = 29.5 knots
We want to find %_ The ships are moving apart at a rate of 29.5 knots.
dt
Step 4: dy _ dy dx 20— 2750 OX 20x  dx
2 =2 = - -+ —_ = — kil
o= B oro — 12 A R G i
ant =y ore=1tan (B) Since%=30m/sec, we have
Step 5: L —% cm/sec.
da _do ,da__db . (1+x
o
o 1 dt d  dtdt dy 60(—2) 120 _ 24
BT @ 4™ T s
dy_ __600 _
(b) & @109 0 cm/sec
dy _ _ 6020 _ _
(c) it @+ 2092 0.00746 cm/sec
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dy_dydx_ g2 g
Bw " O Vg
ok dy _ 2
Sinc e —2 cm/sec, wehavea— 8 — 6x“ cm/sec.

@ % = 8- 6(—3)2 = —46 cmisec

- 6(1)2 = 2 cm/sec

(b)

sle %\%

() 2L =8-6(4)2 = —88cm/sec

39. (a) The point being plotted would correspond to a point on
the edge of the wheel as the wheel turns.

(b) One possible answer is§ = 167t, wheret isin seconds.
(An arbitrary constant may be added to this expression,
and we have assumed counterclockwise motion.)

(c) Ingeneral, assuming counterclockwise motion:

% —25sin 9— = —2(sin 6)(16m) = —327 Sin
% = 2cos 0— = 2(cos 0)(16m) = 327 cos 6
Atg ="

% = —32msin 7 = —16m(V2) ~ —71.086 ft/sec
% = 327 cos 7 = 16m(\/2) ~ 71.086 ft/sec
me=%

% = —32msin 2 = 327 ~ 100,531 fi/sec

d 327 cos Z = 0 ft/sec

ot 2

At 0 = 7

% = —327 sinm = 0 ft/sec

% = 327 cos 7 = — 327 ~ —100.531 ft/sec

40. (a) One possible answer:
x=30cosh,y=40+ 30snéo

(b) Since the ferris wheel makes one revolution every
10 sec, we may let 6 = 0.2zt and we may write
x = 30 cos 0.27t, y = 40 + 30 sin 0.27t.
(This assumes that the ferris wheel revolves
counterclockwise.)

In general
% —30(sin 0.2771)(0.27) = —6ar sin 0.27t
% 30(cos 0.27t)(0.27) = 6 cos 0.2mt

t=05:

= —67 sin 7 = 0 ft/sec

= 67 cos 7 = 67(—1) = —18.850 ft/sec
= —6m sin 1.6 = 17.927 ft/sec

= 67 cos 1.6 = 5.825 ft/sec

dy d av du
—= = —(W) = U— + v—
t( ) dt

41. (a) .
= u(0.05v) + v(0.04u)

= 0.09uv
= 0.09y
Since 2{ = 0.09y, the rate of growth of total production
is 9% per year.
dy _ dv du
=+ = +
® & (uv) Yo T Var
= u(0.03v) + v(—0.02u)
= 0.01uv
= 0.0y
Thetotal production isincreasing at the rate of 1% per
year.

m Chapter 4 Review (pp. 242-245)

1Ly=xV2-x
1
y = Jn+ (V2=
2V2 —x
_ —X+22-%
2V2 —x
_ 4 — 3x
2V2—-x 4
The first derivative has a zero at —.
Critical point value: = % y= 4TY6 ~ 1.09
Endpoint values: X= -2 y=—4
X=2 y=0
4Ve 4

The global maximum valuei |s— atx= 3 and the global
minimum valueis —4 at x = —2.

2. Sincey is acubic function with a positive leading
coefficient, wehavelim y = —o and lim y = «. There are

X— —o X— 00

no global extrema.

3.y = 0AE)(—2x3 + () ()

= 2e¥¥ - 1+x
2eV¥%(x — 1)(x+ 1)
X
Intervals x< -1 |-1<x<0|0<x<1l| x>1
Sign of y’ - + — +
Behavior of y | Decreasing| Increasing | Decreasing | Increasing

y' = %[Ze”"z(—x’l +X)]
= 262+ 1) + (—x L+ x)(2e¥)(—2x79)

= 2V 2+ 1+ 2x 4 — 27D

_ 26V — x2 + 2)
=Tk e
2eV¥[(x% — 0.5)% + 1.75]
X4




The second derivative is always positive (where defined), so
the function is concave up for all x # 0.
Graphical support:

VIV

Hiniriur
W=l

[-4,4by[-15]
(@ [~1,0) and [1, =)
(b) (=, —1] and (0, 1]
(©) (=, 0)and (0, %)
(d) None
(e) Loca (and absolute) minimaat (1, €) and (—1, €)
(f) None

4. Note that the domain of the functionis[—2, 2].

v =) 20 + (VA
2v4
_ =X +(4—x2)
4-x?
_ 4=
4 —x2
Intervals —2<x<-V2[-V2<x<V2(V2<x<2
Signof y’ - + -
Behavior of y Decreasing Increasing Decreasing
VA= x3)(—4x) — (4 — 23— — (-2
(VA =) 2
y = 4-x°
_ X(x*-6)
(4_X2)3/2

Note that the values x = =\/6 are not zeros of y" because
they fall outside of the domain.

Intervals —2<x<0| 0<x<?2

Sign of y” + -

Behavior of y | Concave up | Concave down

Graphical support:

ﬂgiiHmiuHrgﬁﬁ Y=g
[—2.35, 2.35] by [-3.5, 3.5]

@ [-V2 V2]

(b) [-2, —V2] and [V'2, 2]

(© (=20

(d) (0,2

(&) Loca maxima: (—2, 0), (V2, 2)
Loca minima: (2, 0), (—\/E -2)

Note that the extrema at x = =\ 2 are also absolute
extrema.

) 0.0
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5.y =1-—2x—4x°

Using grapher techniques, the zero of y’ is x = 0.385.
Intervals X < 0.385 | 0.385 < x

Signof y’ + -
Behavior of y | Increasing | Decreasing

y'= 212 = —2(1 + 6x%)
The second derivative is always negative so the function is
concave down for al x.

Graphical support:

-

n=.ZBE4EE T=1.el4B047
[—4,4by[-4 2]

(@) Approximately (—o, 0.385]

(b) Approximately [0.385, =)

(c) None

(d) (=, )

(e) Loca (and absolute) maximum at = (0.385, 1.215)

(f) None

Ly =el-1
Intervals x<1 1<x
Signof y’ - +
Behavior of y | Decreasing | Increasing

yN — eX*l

The second derivative is always positive, so the function is
concave up for al x.

Graphical support:

N/

Hinirurm
n=l

[—4,4 by [-2 4]
(@ [1,%)
(b) (===, 1]
(©) (=, )
(d) None
(e) Loca (and absolute) minimum at (1, 0)
(f) None
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7. Note that the domain is (—1, 1).
y= (l _ X2)-1/4
P YN N VP N W X
V' = 1A =29 = 5

1— X2)5/4

Intervals —1<x<0| 0<x<1

Signof y’ - +
Behavior of y | Decreasing | Increasing

201 - %) - (9@ )@ -2

4(1 _ X2)5/2
_ - x)Y2 - 2x* + 5¢F
4(1 — x?)>?
_ 3% +2
4(1 _ X2)9/4

Graphical support:

L

W=E201337

Haxipum
H==.28z700E

[-4.7,47 by [-3.1,31]

@ (—, =27 = (=, —0.794]

(b) [-27Y3, 1) = [—0.794, 1) and (1, )
(©) (—o, —2Y3) = (—o, —1.260) and (1, =)
(d) (—2Y3, 1) = (—1.260, 1)

(e) Loca maximum at

(_27113‘ % ) z—ua) ~ (—0.794, 0.529)

) (—2”3,% - 2”3> ~ (~1.260, 0.420)

The second derivative is always positive, so the function is

concave up on itsdomain (—1, 1).
Graphical support:

-

Hiniraura
=0

9. Note that the domain is[—1, 1].
1
1-x?
Sincey’ isnegative on (—1, 1) and y is continuous, y is

y'=-

decreasing on itsdomain [—1, 1].

=1 . d B
[-13,1.3 by [-1, 3] y' = 1-@—x37
(a) [01 l) - %(1 _ XZ)*S/Z(_ZX) — _(1_7);2)3/2
(b) (=1,0]
© (=1.9) Intervals -1<x<0| 0<x<1
(d) None - P
(e) Local minimum at (0, 1) Sign of y hi —
(f) None Behavior of y | Concave up |Concave down
=DM -3 _ 23 +1 Graphical support:
&y 0172 -1y
Intervals x<-27W|_27WBox<1| 1<x \\‘\\‘\l
Sign of y’ + - -
Behavior of y | Increasing Decreasing | Decreasing -
[—1.175, 1.175] by [——, —}
4" 4
08— 126) — (23 + DR6E — D@D (&) None
y (X3 _ 1)4 (b) [_l’ 1]
_ (=16 — (23 + 1)(6x) (© (=1,0
oG- 1)° (d) (0,1)
_ 6X2§X3 + g) (&) Local (and absolute) maximum at (—1, m);
(x*—1) local (and absolute) minimum at (1, 0)
T
® (0.3)
Intervals x< —2W3 | M oy<p| 0<x<1 1<x
Sign of y” + - — +
Behavior of y | Concave up | Concave down | Concave down | Concave up
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10. This problem can be solved graphically by using NDER to obtain the graphs shown below.

y y p y /\
aximun ZRF0 Zeko

nelPze0t0l IV=1820127 H==1.7zz051 (Y= n=-2.EBYzzE V=0

[—4,4] by [—1,0.3] [—4, 4] by [-0.4, 0.6] [—4,4] by [-0.7,0.8]

An dternative approach using a combination of algebraic and graphical techniques follows.

Note that the denominator of y is always positive because it is equivalent to (x + 1)° + 2.

02+ 2x+ 3)(1) — (W(2x +2)

Y 02 + 2x+ 3)2
_ —x*+3
(X® + 2x + 3)?
Intervals x<-V3|-V3<x<V3|l V3<x
Sign of y’ - + -
Behavior of y | Decreasing Increasing Decreasing
Y = (2 + 2x + 3)2(—2¥) — (=X + 3)(Q)(X% + 2x + 3)(2x + 2)

(x® + 2x + 3)*
(X® + 2x + 3)(—=2X) — 2(2x + 2)(—x® + 3)
(x® + 2x + 3)°
_ 23— 18— 12
(x> + 2x + 3)°
Using graphing techniques, the zeros of 2x® — 18x — 12 (and hence of y") are at
~ —2.584, x = —0.706, and x = 3.290.

Intervals (—o, —2.584) | (—2.584, —0.706) | (—0.706, 3.290) |  (3.290, =)
Sign of y” - + - +
Behavior of y | Concave down Concave up Concave down | Concave up
@ [-V3, V3
(b) (—=, —V3 and [V3, =)

(c) Approximately (—2.584, —0.706) and (3.290, «)
(d) Approximately (—oo, —2.584) and (—0.706, 3.290)

(e) Loca maximum at (\/5

~ (1732, 0.

~ (—1732,

183);

—0.683)

\/54— 1)

local minimum at (—\/é, &

)

(f) ~(—2.584, —0.573), (—0.706, —0.338), and
(3.290, 0.161)
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11.

12.

Forx>0,y’=%lnx=%

Forx < 0y’ :%In(—x) :%X(—l) :%

Thusy’ = % for al x in the domain.

Intervals (=2,0) 0,2

Sign of y’ - +

Behavior of y | Decreasing| Increasing

y// — _X—2

The second derivative is always negative, so the function is concave down on
each open interval of its domain.

Graphical support:

¥

[-2.35,2.35] by [—3, 1.5]

@ (0,2

(b) [-2,0)

(c) None

(d) (—=2,0)and (0, 2)

(e) Loca (and absolute) maximaat (—2, In 2) and (2, In 2)
(f) None

y' = 3c0s3x — 4sin4x
Using graphing techniques, the zeros of y’ in the domain
0=<x=<27aex~ 0176, x ~ 0.994, x = % ~ 157,

X =~ 2.148, and x ~ 2.965, X ~ 3.834, X = 37” X ~ 5,501

Intervals 0 <x<0.176|0.176 < x < 0.994|0.994 < x < g g < x<2148/2.148 < x < 2.965
Sign of y’ + - + - +
Behavior of y | Increasing Decreasing Increasing Decreasing Increasing
Intervals ~ [2.965 < x < 3.834| 3.834 < x < 37” 37” <x<5591|5591 < x < 27

Sign of y’ - + - +

Behavior of y Decreasing Increasing Decreasing Increasing




Yy’ = —9sin 3x — 16 cos 4x

Using graphing techniques, the zeros of y” in the domain
0=x=27aex~= 0542, x = 1.266, x = 1.876,

X = 2.600, X = 3.425, x = 4.281, x = 5.144 and x = 6.000.

Chapter 4 Review

Intervals 0<x< 0542|0542 < x < 1.266|1.266 < x < 1.876|1.876 < x < 2.600|2.600 < x < 3.425
Sign of y” - + - + -
Behavior of y | Concave down Concave up Concave down Concave up Concave down

Intervals 3425 < x < 4.281]4.281 < x < 5.144|5.144 < x < 6.000{6.000 < x < 27

Sign of y” + - + —

Behavior of y Concave up Concave down Concave up Concave down

Graphical support:

A
VY

Haxirum
W=z .BeEY4E? V=1.zRR0BAL

T 9T

[_Z’ T} by [~ 2.5, 2.5]

(a) Approximately [0, 0.176], [0.994, ﬂ [2.148, 2.965), [3.834, 37”] and [5.591, 277]

(b) Approximately [0.176, 0.994], E 2.148}, [2.965, 3.834], and [37” 5.591]

(c) Approximately (0.542, 1.266), (1.876, 2.600), (3.425, 4.281), and (5.144, 6.000)
(d) Approximately (0, 0.542), (1.266, 1.876), (2.600, 3.425), (4.281, 5.144), and (6.000, 217)

(&) Loca maximaat ~(0.176, 1.266), (% 0)
and (2.965, 1.266), (37” 2), and (27,1);
local minimaat =(0, 1), (0.994, —0.513),
(2.148, —0513), (3.834, —1.806),
and (5.591, —1.806)
3

Note that the local extremaat x = 3.834, x = -

and x = 5.591 are also absolute extrema.

(f) ~(0.542, 0.437), (1.266, —0.267), (1.876, —0.267), (2.600, 0.437), (3.425, —0.329), (4.281, 0.120),

(5.144, 0.120), and (6.000, —0.329)

191
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,_[-e™* x<0
13.y 7{4—3x2, x>0

Intervals x<0 D<x< = | —<Xx

V3| V3
Sign of y’ — + -

Behavior of y |Decreasing| Increasing |Decreasing

" — {e7X! X < 0

y —6X, x>0
Intervals x<0 0<x
Sign of y” + -
Behavior of y | Concave up | Concave down

Graphical support:

/)

Haxirurm
H=tagurons lv=z.or9z00n
[-4,4 by [-2 4]

2

@ (o —}
V3
2
(0) (= 0] and| 2=, o)
V3
(©) (==, 0
(d) (0, »)
- 2 16
(e) Loca maximum at (— —) =~ (1.155, 3.079)
V3 3V3
(f) None. Note that there is no point of inflection at x = 0 because the derivative is undefined and no tangent line exists
at this point.

14.y' = —5x* + 7x2 + 10x + 4
Using graphing techniques, the zeros of y’ are x = —0.578 and x = 1.692.

Intervals X < —0578|—-0.578 < x < 1.692| 1.692 < X

Signof y’ + -

Behavior of y | Decreasing Increasing Decreasing

y' = —20x3 + 14x + 10
Using graphing techniques, the zero of y” is x = 1.079.

Intervals X < 1.079 1.079 < x

Sign of y” + -

Behavior of y | Concave up | Concave down

Graphical support:

axirur

g:i.ﬁBiEBE T=E0.517 20K
[—4, 4] by [-10, 25]
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(@) Approximately [—0.578, 1.692]

(b) Approximately (—, —0.578] and [1.692, )

(c) Approximately (—o°, 1.079)

(d) Approximately (1.079, «)

(e) Local maximum at = (1.692, 20.517);local minimum at =~ (—0.578, 0.972)
(f) =(1.079, 13.601)

Ly = 2x45 — x5

1= 8y-us_ a5 _ 8~ X

y

5 5 5V/x
8 8
Intervals x<0 0<x<5 5<x
Signof y’ - + —
Behavior of y | Decreasing| Increasing | Decreasing

y = _ 8 6536 -us _ A2+ 9

25 25 25x5/5
2 2
Intervals x<—§ —§<x<0 0<x
Sign of y” + - _
Behavior of y | Concave up | Concave down | Concave down

Graphical support:

[

HEEEAS 1Y=1.011198%

— |m
|
>
B
o
<
I
w
L

(b) (—2, 0] and [g oo)

o=
%) (—g o) and (0, )

45
(e) Loca maximum at (g, % . (g) ) =~ (0.889, 1.011);

local minimum at (0, 0)

0 (33037 (50w)



194 Chapter 4 Review

16. We use a combination of analytic and grapher techniques to solve this problem. Depending on the viewing windows chosen,
graphs obtained using NDER may exhibit strange behavior near x = 2 because, for example, NDER (y, 2) =~ 5,000,000 while y’

5 — 4x + 4x% — X

3
is actually undefined at x = 2. The graph of y = — is shown below.

\

T MITENE

Haxiraur
w=.z1519658

[—5.875, 5.875] by [—50, 30]

) (X = 2(=4+ 8 — 3x) — (5 4x + 4x° — x9)(1)
(x—27
_ 23+ 10x - 16x + 3
(x—2)?
The graph of y' is shown below.

I

[—5.875, 5.875] by [—50, 30]
The zero of y’ isx = 0.215.

Intervals x<0215]|0215<x<2| 2<Xx
Signof y’ + — —
Behavior of y | Increasing | Decreasing | Decreasing

» _ (x = 2)%(—6x? + 20x — 16) — (=2x> + 10x? — 16X + 3)(2)(x — 2)

x-2*

_ (x—2)(—6x* + 20x — 16) — 2(—2x° + 10x* — 16x + 3)

x—2?°

= 2(x® - 62 + 12x — 13)

x-2°
The graph of y” is shown below.

\

B

2k
W=I.F0997E8 1V=0

L —

[—5.875, 5.875] by [—20, 20]

The zero of x3 — 6x% + 12x — 13
(and hence of y”) isx = 3.710.

Intervals Xx<2 2<x<3710] 3710<x
Sign of y” - + —
Behavior of y | Concave down| Concave up |Concave down

(@) Approximately (—, 0.215]

(b) Approximately [0.215, 2) and (2, «)
(c) Approximately (2, 3.710)

(d) (—o°, 2) and approximately (3.710, «)
(e) Local maximum at = (0.215, —2.417)

(f) ~(3.710, —

3.420)



17. y' = 6(x + 1)(x — 2)?

18.

19.

20.

21.

22.

23.

24.

Intervals X< -1 |-1<x<2| 2<X
Signof y’ - + +
Behavior of y | Decreasing| Increasing | Increasing

=6(x + 1)(Q(x — 2) + 6(x — 2)4(1)

=6(X—2[(2x+2) + (x— 2)]

= 18x(x — 2) 5,
Intervals x<0 0<x<2 2<x
Sign of y” + - +
Behavior of y | Concave up | Concave down | Concave up

26.

(@) There are no local maxima.
(b) Thereisalocal (and absolute) minimum at x = —1.
(c) Thereare points of inflectionat x = Oand at x = 2.

y =6(x+1(x—2)
Intervals X< -1 |-1<x<2| 2<X
Signof y’ + - +
Behavior of y | Increasing | Decreasing | Increasing
d. > 27.
y =&6(x —Xx—2)=6(2x—1)
1 1
<= =<
Intervals X > > X
Sign of y” - +
Behavior of y | Concave down| Concave up
(@) Thereisalocal maximumat x = —1.
(b) Thereisalocal minimum at x = 2.
(c) Thereisapoaint of inflection at x = %
28.
Since i(—lx“‘ — e‘x> =x2+e7%
dx\ 4
f(x) = —%x“‘ -e X+ C.
Since%secx= sec xtan x, f(x) = secx + C.

Since (2 Inx +

13

3 +x) 2+x2+1,

f(x)=2|nx+%x3+x+c.

Since i<gx3’2 + 2x”2> =
dx\3

f(x) =
f(X) =
f(m) =3
1+0+C=3
c=2
f(x) =

P+ ad?+c

Vi L,
X+\/_

X

—cosx+sinx+ C

—COSX+ sinx+ 2

29.

Chapter 4 Review

f(x) = 3 B rherheivic
X 72
f(1) =
§+1+1+1+c=o
432
c__ 3
12
f(x) = 3 W3y L Loy, 8L
3 2 k7]
V) =s'(t) = 9.8t + 5
s(t) = 4.9t2+ 5t + C
0) = 10
c=10

s(t) = 4.9t% + 5t + 10
alt) = v'(t) = 32

v(it) =32t + C,
v(0) = 20

C,=20

v(t) = s'(t) = 32t + 20
S(t) = 16t% + 20t + C,
s(0) =5

C,=5

s(t) =16t°+ 20t + 5

f(x) = tan x

f'(x) = sec? x

o= (=) o (3 (3]
~on (5 =253

= —1+2(x+1)
4
=x+I-1
2
f(X) = secx
f'(X) = sec x tan x

M@ﬂ&%w&%_ﬁ
=)+ (G en (G 5)

=\/§+\f2(1)(x—1>
_Vax -T2 3

f(x) =
fr(x) =

1+ tanx
—(1 + tan X)"3(sec? X)

1
cos® x(1 + tan x)?
_ 1
(cosx + sin x)?

L(x) = f(0) + f'(0)(x — 0)

1-1x—-0)

-X+1

195
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30. f(X) = e+ sinx
f'(X) = € + cosx
L(x) = f(0) + f'(0)(x — 0)
=1+2(x—0)
=2x+1
31. The global minimum value of % occursat X = 2.

32. (a) Thevaluesof y’ and y” are both negative where the
graph is decreasing and concave down, at T.

(b) Thevalueof y’ is negative and the value of y” is posi-
tive where the graph is decreasing and concave up, at
P.

33. (@) Thefunction isincreasing on the interval (0, 2].
(b) The function is decreasing on the interval [—3, 0).

(c) Thelocal extreme values occur only at the endpoints of
the domain. A local maximum value of 1 occurs at
X = —3, and alocal maximum value of 3 occurs at

X=2.

34. The 24th day
35. y
2L

:/N ! ! Ly x
3 \ 3
.\A: f(x)

_3 -

36. (@) We know that f is decreasing on [0, 1] and increasing
on[1, 3], the absolute minimum value occursat x = 1
and the absolute maximum value occurs at an endpoint.
Sincef(0) = 0, f(1) = —2, and f(3) = 3, the absolute
minimum valueis —2 at x = 1 and the absolute maxi-
mum valueis3at x = 3.

(b) The concavity of the graph does not change. There are
no points of inflection.

© y
3L

-3F

37. (a) f(x) iscontinuous on [0.5, 3] and differentiable on
(05, 3).

() £/(x) = (x)(%) +(N@) =1+ Inx
Usinga = 0.5and b = 3, we solve as follows.
£(3) - 1(05)

f'(c) =
© 3-05
l+|nc=w
25
| (33
n(=—=_
0.50.5)
Inc= -1
25

Inc=04In27V2) — 1
c=e 1(27V2)°4
_142
c=e 1458 = 1.579

(c) Thedope of thelineis
m= w = 041n(27V2) = 0.2 In 1458, and
the line passes through (3, 3 In 3). Its equation is
y = 0.2(In 1458)(x — 3) + 3In 3, or approximately

y = 1.457x — 1.075.

(d) The dope of thelineism = 0.2 In 1458, and the line
passes through
(. £(0) = (¢~ 1V/1458, e 1V/1458(—1 + 0.2 In 1458))

=~ (1.579, 0.722).
Its equation is
y = 0.2(In 1458)(x — c) + f(c),
y = 0.2In 1458(x — e~1\/1458)
+ e~ IV/1458(—1 + 0.2 In 1458),
y = 0.2(In 1458)x — e~ \/1458,
or approximately y = 1.457x — 1.579.
38. (a) V(t) = s'(t) = 4 — 6t — 3t2

(b) a(t) =v'(t) = —6 — 6t

(c) The particle starts at position 3 moving in the positive
direction, but decelerating. At approximately t = 0.528,
it reaches position 4.128 and changes direction, begin-
ning to move in the negative direction. After that, it

continues to accelerate while moving in the negative
direction.

39. (@) L(X) =f(0) + f'(0)(x — 0)
=-1+0x—-0)=-1
(b) f(0.1) = L(0.1) = —1
(c) Greater than the approximation in (b), since f'(x) is
actually positive over the interval (0, 0.1) and the
estimate is based on the derivative being 0.

40. (a) Since% = (XA (—e™) + (e7M(2X) = (2x — x)e7,
dy = (2x — x)e X dx.
(b) dy = [2(1) - (1)’(e")(0.01)

=001e?!
~ 0.00368



41.

42.

2701.73

(a) Regression equationy = 1 17 280035

[0, 20] by [—300, 2800]
(b) Note that
y = %2701.73(1 + 17.28¢ 0361

= —2701.73(1 + 17.28¢~ %39 72(17.28)(—0.36e 2%

16,806.9e ~0-36%
(1 + 17.28e 03092

The graph of y’ is shown below.

gg;irgniusrpus? Y=ehz 1EE2E
[0, 20] by [—75, 275]
Using graphing techniques, y’ has its maximum at

X = 7.92. This corresponds to the year 1998 and
represents the inflection point of the logistic curve. The
logistic regression equation predicts that the rate of
increase in debit card transactions will begin to
decrease in 1998, and since y(7.92) =~ 1351, there are
approximately 1351 million transactions that year.

(c) Asxincreases, the value of y will increase toward
2701.73. The logistic regression equation predicts a
ceiling of approximately 2702 million transactions per
year.

f(x) =2cosx—V1+x
/() = —2sinx - —=
2V1+x
f(x)
Xn+1 =Xn_ .

f/(x)

Zcosxnf \/1+xn

: 1
—2sinx, — ———
% 2V1+x,
The graph of y = f(x) shows that f (x) = 0 has one solution,
near x = 1.

V\

=X —

[-2,10] by [—6, 2]
X = 1
X, =~ 0.8361848
X, =~ 0.8283814

X, =~ 0.8283608
X5 = 0.8283608

Solution: x = 0.828361

43.

45,

46.
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Let t represent time in seconds, where the rocket lifts off at
t = 0. Since a(t) = v'(t) = 20 m/sec? and v(0) = 0 m/sec,
we have v(t) = 20t, and so v(60) = 1200 m/sec. The speed
after 1 minute (60 seconds) will be 1200 m/sec.

. Let t represent time in seconds, where the rock is blasted

upward at t = 0. Since a(t) = v'(t) = —3.72 m/sec® and
v(0) = 93 m/sec, we have v(t) = —3.72t + 93. Since

s'(t) = —3.72t + 93 and 5(0) = 0, we have

S(t) = —1.86t2 + 93t. Solving v(t) = 0, we find that the
rock attains its maximum height at t = 25 sec and its height
at that timeis s(25) = 1162.5 m.

Note that s = 100 — 2r and the sector areais given by

A= 7,.r2<i> = Lrs = 11100 — 2r) = 50r — r2 Tofind
27r 2 2

the domain of A(r) = 50r — r?, note that r > 0 and

0 < s < 27r, which gives 12.1 = % < r < 50. Since
A’(r) = 50 — 2r, the critical point occursat r = 25. This
valueisin the domain and corresponds to the maximum
area because A”(r) = —2, which is negative for al r.

The greatest areais attained when r = 25 ft and s = 50 ft.

27

(X, 27 —x?)

Foro<x< \/5, the triangle with vertices at (0, 0) and
(£x, 27 — x) has an area given by

AX) = %(2x)(27 —x%) = 27x — x%. Since

A =27 -3 =3(3-%(3+x adA” = —6x, the
critical point in the interval (O, \/E) occurs at x = 3 and
corresponds to the maximum area because A"(x) is negative
in thisinterval. The largest possible areais

A(3) = 54 square units.
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47.

48.

49,

If the dimensions are x ft by x ft by h ft, then the total oh=12 —2r.

50. Note that, from similar cones, % = 1212

H 2 2
amount of steel used isx” + 4xh ft”. Therefore, The volume of the smaller cone is given by

2 _ 108 - x2 L
x“+ 4xh =108 andso h 3— - The volume is given V= %wrzh _ %wrz(lz —2r) = Amr? — %wrgfor
_ 2 - 108x —x° _ _ 3
by V(¥ = x*h = 4 27x = 0.25¢". Then 0<r<6. Then‘i—\r/ = 8nt — 2mr? = 27r(4 — 1), so the

") — 97 2 _ _
VI(x) = 27 = 0.75¢" = 0.75(6 + X)(6 — x) and critical point occurs at r = 4. This critical point

V'(x) = —1.5x Thecritical point occurs at x = 6, and it corresponds to the maximum volume because ;_d\r/ > Ofor

corresponds to the maximum volume because V"(x) < 0 for

o<r <4andd—v<0for4< r < 6. The smaller cone has
108 — 62 dr

x> 0. The corresponding height is 4(6) = 3ft. The the largest possible valuewhenr = 4 ftand h = 4 ft.
base measures 6 ft by 6 ft, and the height is 3 ft.
5. T
If the dimensions are x ft by x ft by h ft, then we have Lid
x’h=32andsoh = % Neglecting the quarter-inch I ______________
. . S
thickness of the steel, the area of the steel used is 10in. | |
Base
AX) = X? + 4xh = x? +128 « Wecan minimize the weight : :
- -———-—————-

of the vat by minimizing this quantity. Now I

—2_2,3_ 43 - —X—
A'(X) =2x—128x “ = ?(x — 4% and < 15in. !

(@) V(x) = x(15 — 2)(5 — X)

” — —3 111 T —_
A’(X) = 2 + 256x*. The critical point occurs at x = 4 and (b, ©) Domain: 0 < x < 5

corresponds to the minimum possible area because

A"(xX) > 0for x > 0. The corresponding height is

Haxiraur
W=1.9p10728 Y=g6.019118

% = 2 ft. The base should measure 4 ft by 4 ft, and the

height should be 2 ft. [0, 5] by [-20, 70]
The maximum volume is approximately 66.019 in and
it occurs when x = 1.962 in.

(d) Notethat V(x) = 2x3 — 25x2 + 75x,

minimize the cylinder's volume soV'(X) = 6x2 — 50x + 75.

2 2
We haver? + (g) =3,s0r2=3- %. We wish to

Solving V'(x) = 0, we have

V—wrzh—w( )h 3h——for0<h<2\/_ gV

. + V(-50)2 — +V
since &Y = 37 — 37" _ 375 | 2 —h) and x =30 V(0 -4 _ 50+ V700

L dn 4 4 2(6) 12
% = —3lh the critical point occurs at h = 2 and it _50+10V7 _ 25 5\/?_

12 6
corresponds to the maximum value because% < Ofor These solutions are approximately x ~ 1.962 and
) ) 22 X = 6.371, so the critica point in the appropriate

h > 0. The corresponding value of r is /3 — T V2, domain occurs at
The largest possible cylinder has height 2 and radius V2. x=25= 5\/;_

6



52.
10

(%, 8 cos 0.3x)

™ \z'n X
For0<x< 5?” the area of the rectangle is given by
A(X) = (2¥)(8 cos 0.3x) = 16x cos 0.3x.
Then A’'(X) = 16x(—0.3 sin 0.3x) + 16(cos 0.3x)(1)

= 16(cos 0.3x — 0.3x sin 0.3x)
Solving A’(x) = O graphically, we find that the critical
point occurs at x = 2.868 and the corresponding area is

approximately 29.925 square units.

53. The cost (in thousands of dollars) is given by

C(X) = 40x + 30(20 — y) = 40x + 600 — 30Vx% — 144.

30 30x
ThenC/(x) = 40 - ——=—(2x) = 40 - ——_.
2V x% — 144 X2 — 144
Solving C'(x) = 0, we have:
30x = 40
VX2 — 144
3x = 4Vx% — 144

9x? = 16x> — 2304
2304 = 7x°
Choose the positive solution:
43 .
X = +—— = 18.142 mi
\/‘

7
y=Vx2—12= % ~ 13.607 mi

7

54.

55.
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The length of the track is given by 2x + 27T, so we have
2x + 2arr = 400 and therefore x = 200 — #rr. Then the area
of therectangleis
A(r) = 2rx

= 2r(200 — rr)

=400r — 273 for0<r < %
Therefore, A’(r) = 400 — 47rr and A"(r) = —4m, so the
critical point occursat r = % m
and this point corresponds to the maximum rectangle area
because A"(r) < O for al r.
The corresponding value of x is
X = 200 — w(%) ~ 100 m.
The rectangle will have the largest possible area when

100

Xx=10mandr =—m.
T

Assume the profit is k dollars per hundred grade B tires and

2k dollars per hundred grade A tires.

Then the profit is given by

PO) = 2k + k - 22
— K. (20 — 5x) + x(5 — x)
5-—x
— ok 0-%
5-x
gy — op . (B = X)(=2%) — (20 — x))(=1)
P'(x) = 2k 57
_ x? — 10x + 20
=2k W

The solutions of P'(x) = 0 are

_ 10+ V(-10)* — 4(1)(20)
2(1)

the appropriate domainisx = 5 — V5~ 2.76.

X :St\/g,sothesolutionin

Check the profit for the critical point and endpoints:

Critical point: X =~ 2.76 P(x) = 11.06k
Endpoints: x=0 P(x) = 8k
x=4 P(X) = 8k

The highest profit is obtained when x = 2.76 and y = 5.53,
which corresponds to
276 grade A tires and 553 grade B tires.
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56. () The distance between the particlesis| f ()| where
f(t) = —cost + cos(t + %) Then
f() = —sint + sjn(t+%>

Solving f'(t) = 0 graphically, we obtaint = 1.178, t = 4.230, and so on.

e

gk
W=l 1780872 W=0

[0, 2@] by [—2, 2]
Alternatively, f’(t) = 0 may be solved analytically as follows.

1 =i (t+ §) - 5] - sn(t+ 5) + 5]

=|dgn(t+ Z)cosZ — cos t+1>sin1 —|sin(t+Z)cosZ + cost+Z)snZ
8 8 8 8 8 8 8 8

= —2sinZ cos (t + Z),
8 8
so the critical points occur when
T\ _ _ 37
cos (t + E) =0,ort= Y + kar. At each of these values,
f(t)= =2 cos%” ~ *0.765 units, so the maximum distance between

the particlesis 0.765 units.

(b) Solving cost = cos (t + %) graphically, we obtain t = 2.749, t = 5.890, and so on.

NN
N

Intersection
W= /4ER9FE Y=-.02ZEFOC

[0, 277] by [-2, 2]
Alternatively, this problem may be solved analytically as follows.

cost = cos (t + %)

cos[(tJr%)—a =cos[<t+%>+a
cos(t+ Z)lcosZ +sn(t+Z)snZ =cos(t+Z)cosZ —sin(t+ Z)cosZ
8 8 8 8 8 8 8 8
2dn t+1>sin3=0
8 8
sm(t+3>:0
8
t="1" 4 knr
8

The particles collide whent = %ﬂ =~ 2.749 (plus multiples of 7 if they keep going.)



57.

58.

The dimensions will be xin. by 10 — 2xin. by 16 — 2xin.,
50 V(X) = X(10 — 2X)(16 — 2X) = 4x® — 52x% + 160x
for0<x<5.

Then V'(X) = 12x% — 104x + 160 = 4(x — 2)(3x — 20), S0
the critical point in the correct domainisx = 2.

This critical point corresponds to the maximum possible
volume because V'(x) > 0for0 < x < 2

and V'(x) < 0for 2 < x < 5. The box of largest volume
has a height of 2 in. and a base measuring

6in. by 12in., and its volume is 144 in®.

Graphical support:

Hazxirura
H=e =144

[0, 5] by [—40, 160]
Step 1:
r = radius of circle
A = areaof circle
Step 2:
At the instant in question, % -2 m/secandr = 10 m.
T
Step 3:
We want to find d—A.
dt
Step 4:
A= mr?

Step 5:

A _, dr
dt dt
Step 6:

dt
The areais changing at the rate of —40 m?/sec.

g 277(10)<—%) — —40

59.

60.
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Step 1:

X = x-coordinate of particle

y = y-coordinate of particle

D = distance from origin to particle

Step 2:

At theinstant in question, x =5m,y = 12 m,

o _ —1 m/sec, andﬂ = —5 m/sec.
dt dt

Step 3:

We want to find ?T?'

Step 4:
D=Vx®+y?
Step 5:

e k& W
o __ 1 (zX%Zyﬂ):M
dt Vi@ y2\dt da)  Vx2+y?
Step 6:
o O +(A)(=5
@ Ve oM

dbD

Since o is negative, the particle is approaching the origin
at the positive rate of 5 m/sec.

Step 1:

x = edge of length of cube

V = volume of cube

Step 2:

At the instant in question,

?j—\t/ = 1200 cm®min and x = 20 cm.

Step 3:

We want to find %.

Step 4:

V=x3

Step 5:

av _ g2dx

a - X a

Step 6:

1200 = 3(20)2%
o _ 1 cm/min
dt

The edge length is increasing at the rate of 1 cm/min.
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61.

62.

Step 1:

X = x-coordinate of point

y = y-coordinate of point

D = distance from origin to point

Step 2:

At the instant in question, x = 3 and (L—Et) = 11 units per sec.

Step 3:
We want to find %.
dt
Step 4:
Since D2 = x2 + y2 and y = x¥2, we have

D=Vx%+x3forx=0.

Step 5:
dD 1 2, dXx
= =——(2x+ 3X)—
at ZVX2+X3( )dt
_ X+ 3% dx _ 3x+2 dx
2V1+x V14 x d
Step 6:
_3(3) +2dx
11=""—"—+—
2V4
%=4unitspersec
dt
(@ Since? = %, we may write h = %orr = 2—5h

(b) Step 1:
h = depth of water in tank
r = radius of surface of water
V = volume of water in tank

Step 2:

At the instant in question,

%\t’ — 5ft¥minandh = 6 ft.

Step 3:

We want to find —%.

Step 4:
V= 171'!’2h = i71'h?’
3 75

Step 5:
av _ 4 hzdh

d 25 dt
Step 6:

_5— 4 ee2dh
5= 2570

dh_ 15 _ 0276 fmin
dt 1447
Since % is negative, the water level is dropping at the

positive rate of =0.276 ft/min.

63.

65.

66.

Step 1:

r = radius of outer layer of cable on the spool
0 = clockwise angle turned by spool

s = length of cable that has been unwound

Step 2:

At the instant in question, % =6ft/secandr = 1.2 ft
Step 3:

We want to find 9.

dt

Step 4:

s=r0

Step 5:

. . . ds _ do
Sincer is essentially constant, i rdt'
Step 6:

_ 18
6= 1.20|t
% = 5 radians/sec

The spool isturning at the rate of 5 radians per second.

Calt) = Vv'(t) = —g = —32 ft/sec?

Since v(0) = 32 ft/sec, v(t) = s'(t) = —32t + 32.

Since s(0) = —17 ft, s(t) = —16t% + 32t — 17.

The shovelful of dirt reaches its maximum height when

v(t) = 0, att = 1 sec. Since (1) = —1, the shovelful of dirt
is still below ground level at this time. There was not
enough speed to get the dirt out of the hole. Duck!

We have V = 27r%h, 50 &Y = 2rh and dv = 2arh dr.
3 dr 3 3
When the radius changes from a to a + dr, the volume

change is approximately dV = %wah dr.

(a) Let x = edge of length of cube and S = surface area of
cube. Then S = 6x4, which meansg—i = 12x and
dS = 12x dx. We want |dS = 0.02S, which gives
[12x dx| = 0.02(6x) or |dx = 0.01x. The edge should

be measured with an error of no more than 1%.

(b) Let V = volume of cube. Then V = x3, which means
3—\; = 3x% and dV = 3x? dx. We have|dx| = 0.01x,
which means [3x? dx| = 3x%(0.01x) = 0.03V,
so |dV| = 0.03V. The volume calculation will be
accurate to within approximately 3% of the correct

volume.
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67. Let C = circumference, r = radius, S = surface area, and V = volume.

(@) SinceC = 2ar, we have‘i—c = 27 and so dC = 27 dr.
Therefore, —| = 227—(;" = % (ig% = 0.04 The calculated radius will be within approximately 4% of the correct
T
radius.

(b) Since S = 4xr?, we have 3—? 871 and so

dS = 8ar dr. Therefore, 95| = |87 if
Aarr

= ‘Z—dr = 2(0.04) = 0.08. The calculated surface area will be within approximately 8% of the correct surface area.

(¢) SinceV = %wr% we haveccjj—\r/ = 4712 and s0
dV = 4zr? dr. Therefore 4V _ |4mr?dr) _ |3 = 3(0.04) = 0.12.
\Y ﬂma
3

The calculated volume will be within approximately 12% of the correct volume.

68. By similar triangles, we haveg = a+hzo which gives ah = 6a + 120, or h = 6 + 120a~ . The height of the lamp post is
approximately 6 + 120(15) 1 = 14 ft. The estimated error in measuring awas |da| < 1in. = — ft Snce% = —120a 2, we
have |dh| = |—120a 2 da| = 120(15)‘2<1l ) = —ft so the estimated possible error |s+ S ftor +1% in.

69. % = 2sinxcos x — 3. Since sin x and cos x are both between 1 and —1, the value of 2 sin x cos x is never greater than 2.
Therefore, gy 2 — 3= —1for all values of x.

Since 3 is always negative, the function decreases on every interval.





