Chapter 4 / Example 17 Drawing straight-line graphs

Draw the graph of the lines:

a $5 x+3 y=10$
b $y=\frac{1}{3} x+4$

Press [f1] $\mathrm{y}=$ to display the equation entry screen.
Rearrange the equation in gradient-intercept form, type $-\frac{5}{3} x+\frac{10}{3}$ and press enter to enter the first equation as Y_{1}.

Press ALPHA [f1] 1:n/d to select the fraction template to enter the fractions.

Press [f5] graph to display the graph screen
The GDC now displays the straight-line graph:

$$
Y_{1}=-\frac{5}{3} x+\frac{10}{3}
$$

With the default axes, $-10 \leq x \leq 10$ and $-10 \leq y \leq 10$.

The x-intercept is a zero of the function.
To find the y-intercept press 2nd [f4] [calc] 1:value
Press 0 enter to change the x-coordinate to 0 .
The GDC displays the coordinates of the y-intercept, $\left(0, \frac{10}{3}\right)$.
Yi=-(5,3)X+(10,3)

To find the zeros press 2nd [f4] [calc] 2:zero
You will need to give the left and right bounds of the region that includes the zero.
The GDC shows a point on the curve and asks you to set the left bound. Move the point using \square and choose a position to the left of the zero.

Press enter.

The GDC shows a line where you have set the left bound and a point on the curve.
Move the point using $\square \square$ and choose a position to the right of the zero.
When the region contains the zero, Press enter.

Chapter 4 / Example 17
 Drawing straight-line graphs

The GDC requires an initial guess for the position of the zero. Choose the default position. Press \square enter.	
The GDC displays a zero at (2,0) .	
To draw the line $y=\frac{1}{3} x+4$ press $[f 1] \quad y=$ to display the equation entry screen. Type $\frac{1}{3} x+4$ and press enter to enter the second equation as Y_{2}. Press ALPHA [f1] 1:n/d to select the fraction template to enter the fractions.	Plot1 Plot2 Plot3 - Y $_{1} E-\frac{5}{3} X+\frac{10}{3}$ - $\mathrm{Y}_{2} \mathrm{E} \frac{1}{3} \mathrm{X} X+4$ - $\mathrm{YY}_{3}=$ -NY4 $=$ - $\mathrm{NY} 5=$ - $\mathrm{Y}_{6}=$ - NY\% $=$ - $\mathrm{YY}_{8}=$
Press [f5] graph to display the graph screen. The GDC now displays the straight-line graph $Y_{2}=\frac{1}{3} x+4$ With the default axes, $-10 \leq x \leq 10$ and $-10 \leq y \leq 10$.	
To find the y-intercept press 2nd [f4] [calc] 1:value Press 0 enter to change the x-coordinate to 0 . Press Δ to select the function Y_{2}. The GDC displays the coordinates of the y-intercept, $(0,4)$.	

Chapter 4 / Example 17
 Drawing straight-line graphs

To view the zero of Y2 you will need to change the axes to include points further to the left.
Press [f2] window
Change Xmin to -15 and leave the other items as they are.
Press [f5] graph when you have finished.

WINDOW

Xmin=-15
$X_{\text {max }}=10$
Xscl=1
Ymin=-10
$Y_{\max }=10$
Yscl=1
Xres=1
$\Delta X=.09469696969697$
TraceStep=. 18939393939394
The x-intercept is a zero of the function.
To find the zeros press 2nd [f 4] [calc] 2:zero
Press Δ to select the function Y_{2}.
You will need to give the left and right bounds of the region that includes the zero.
The GDC shows a point on the curve and asks you to set the left bound. Move the point using $\square \triangle$ and choose a position to the left of the zero.
Press enter.

The GDC shows a line where you have set the left bound and a point on the curve.

Move the point using \square and choose a position to the right of the zero.

When the region contains the zero, Press enter.

The GDC requires an initial guess for the position of the zero.
Choose the default position.
Press enter.

The GDC displays a zero at $(-12,0)$.

